Electrodeposition of Ni-Co thin films from ammonia-chloride electrolyte

Original scientific paper

Authors

  • Aygun Oruj Zeynalova Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan, AZ 1143, Baku, H.Javid 113 https://orcid.org/0009-0002-4639-7157
  • Natavan Sharafaddin Soltanova Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan, AZ 1143, Baku, H.Javid 113 https://orcid.org/0009-0007-0469-2365
  • Ulviyya Magsud Gurbanova Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan, AZ 1143, Baku, H.Javid 113 https://orcid.org/0000-0001-6239-3207
  • Ruhangiz Gurmuz Huseynova Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan, AZ 1143, Baku, H.Javid 113 https://orcid.org/0009-0004-5838-071X
  • Akif Shikhan Aliyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan, AZ 1143, Baku, H.Javid 113 https://orcid.org/0000-0003-0560-5263
  • Dilgam Babir Tagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan, AZ 1143, Baku, H.Javid 113 https://orcid.org/0000-0002-8312-2980

DOI:

https://doi.org/10.5599/jese.2666

Keywords:

Cobalt-nickel alloy, co-deposition, alkaline-glycine electrolyte, hydrogen evolution, electrocatalysis

Abstract

This study presents the research results on the co-deposition of nickel and cobalt from an alkaline electrolyte containing glycine. For this purpose, cyclic and linear polarization curves of co-deposition were obtained at various cobalt concentrations, different poten-tial sweep rates, and electrolyte temperatures. It was established that the co-deposition process occurs anomalously, with the cobalt content in the deposited films exceeding that of nickel. The deposits obtained under optimal conditions contained 37.25 % Ni and 51.43 % Co. The study of the effect of the potential sweep rate on the co-deposition process of nickel and cobalt revealed a linear relationship between the current peak value and the square root of the potential sweep rate. This indicates that the initial stage of Ni-Co co-deposition is controlled by the diffusion of the metal ions to the cathode surface. When recording polarization curves on a rotating disk electrode at different rotation speeds, the relationship between the current peak value and the square root of the electrode rotation speed was also linear at relatively low rotation speeds. However, at higher rotation speeds, the process was controlled by electrochemical polarization. The co-deposition of Ni with Co was confirmed through X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses. The investigation of the catalytic activity of Ni-Co deposits in a neutral medium (0.5 M Na₂SO₄) demonstrated that the amorphous thin films, not subjected to annealing, exhibited the best electrocatalytic properties for the hydrogen evolution reaction. The Tafel slope was determined to be 118 mV dec-1.

Downloads

Download data is not yet available.

References

Q.-N. Ha, N.S. Gultom, Ch.-H. Yeh, D.-H. Kuo, One-pot synthesized Li, V co-doped Ni3S2 nanorod arrays as a bifunctional electrocatalyst for industrialization-facile hydrogen production via alkaline exchange membrane water electrolysis, Chemical Engineering Journal 472 (2023) 144931. https://doi.org/10.1016/j.cej.2023.144931

A. Sh. Aliyev, R. G. Guseynova, U. M. Gurbanova, D. M. Babanly, V. N. Fateev, I. V. Pushkareva, D. B. Tagiyev, Electrocatalysts for water electrolysis, Chemical Problems 16(3) (2018) 283-306. https://chemprob.org/wp-content/uploads/2018/08/A.-Aliyev-283-306-1.pdf

J. Feng, X. Zhong, M. Chen, P. Zhou, L. Qiao, H. Bai, D. Liu, D. Liu, Y.-Y. Chen, W. F. Ip, Sh. Chen, J. Ni, D. Liu, H. Pan, Iron-incorporated defective graphite by in-situ electrochemical oxidization for oxygen evolution reaction, Journal of Power Sources 561 (2023) 232700. https://doi.org/10.1016/j.jpowsour.2023.232700

J. Zhou, X. Meng, P. Ouyang, R. Zhang, H. Liu, Ch. Xu, Z. Liu, Electrochemical behavior and electrodeposition of Fe-Co-Ni thin films in choline chloride/urea deep eutectic solvent, Journal of Electroanalytical Chemistry 919 (2022) 116516. https://doi.org/10.1016/j.jelechem.2022.116516

L. Jiang, N. Yang, C. Yang, X. Zhu, Y. Jiang, X. Shen, C. Li, Q. Sun, Surface wettability engineering: CoSx-Ni3S2 nanoarray electrode for improving overall water splitting, Applied Catalysis B: Environmental 269 (2020) 118780. https://doi.org/10.1016/j.apcatb.2020.118780

B. Yang, M. Li, Z. Zhang, Sh. Chen, M. Wang, L. Sheng, L. Deng, R. Si, M. Fan, H. Chen, Spatial and electronic effects synergistically enhanced electrocatalytic oxygen evolution using atomic iridium-anchored cobalt oxyhydroxide nanosheets, Applied Catalysis B 340 (2024) 123227. https://doi.org/10.1016/j.apcatb.2023.123227

X. Gu, Z. Liu, M. Li, J. Tian, L. Feng, Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction, Applied Catalysis B: Environmental 297 (2021) 120462. https://doi.org/10.1016/j.apcatb.2021.120462

H. Zhao, Z.-Y. Yuan, Progress and perspectives for solar-driven water electrolysis to produce green hydrogen, Advanced Energy Materials 13(16) (2023) 2300254. https://doi.org/10.1002/aenm.202300254

T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams-Second edition, ASM International, Materials Park, Ohio, 1990. ISBN: 978-0-87170-403-0

J. A. M. Oliveira, A. F. de Almeida, A. R. N. Campos, S. Prasad, J. J. I. N. Alves, R. A. C. de Santana, Effect of current density, temperature and bath pH on properties of Ni-W-Co alloys obtained by electrodeposition, Journal of Alloys and Compounds 853 (2021) 157104. https://doi.org/10.1016/j.jallcom.2020.157104

R. Oriňáková, A. Oriňák, G. Vering, I. Talian, R. M. Smith, H. F. Arlinghaus, Influence of pH on the electrolytic deposition of Ni-Co films, Thin Solid Films 516(10) (2008) 3045-3050. https://doi.org/10.1016/j.tsf.2007.12.081

M. Landa-Castro, J. Aldana-González, M. G. Montes de Oca-Yemha, M. Romero-Romo, E. M. Arce-Estrada, M. Palomar-Pardavé, Ni-Co alloy electrodeposition from the cathode powder of Ni-MH spent batteries leached with a deep eutectic solvent (reline), Journal of Alloys and Compounds 830 (2020) 154650. https://doi.org/10.1016/j.jallcom.2020.154650

Y. H. You, C. D. Gu, X. L. Wang, J. P. Tu, Electrodeposition of Ni-Co alloys from a deep eutectic solvent, Surface and Coatings Technology 206(17) (2012) 3632-3638. https://doi.org/10.1016/j.surfcoat.2012.03.001

Gh. B. Darband, M. Aliofkhazraei, A. Dolati, A. S. Rouhaghdam, Electrocrystallization of Ni nanocones from chloride-based bath using crystal modifier by electrochemical methods, Journal of Alloys and Compounds 818 (2019) 152843. https://doi.org/10.1016/j.jallcom.2019.152843

U. M. Gurbanova, Z. S. Safaraliyeva, N. R. Abishova, R. G. Huseynova, D. B. Tagiyev, Mathematical modeling the electrochemical deposition process of Ni-Mo thin films, Azerbaijan Chemical Journal 3 (2021) 6-11. doi.org/10.32737/0005-2531-2021-3-6-11

U. M. Gurbanova, D. M. Babanly, R. G. Huseynova, D. B. Tagiyev, Study of electrochemical deposition of Ni-Mo thin films from alkaline electrolytes, Journal of Electrochemical Science and Engineering 11(1) (2021) 39-49. https://doi.org/10.5599/jese.912

Y. Chen, H. Yang, H. Feng, P. Yang, J. Zhang, B. Shu, Electrodeposition and corrosion performance of Ni-Co alloys with different cobalt contents, Materials Today Communication 35 (2023) 106058. https://doi.org/10.1016/j.mtcomm.2023.106058

I. M. A. Omar, M. Aziz, Kh. M. Emran, Impact of ionic liquid [FPIM]Br on the electrodeposition of Ni and Co from an aqueous sulfate bath, Journal of Materials Research and Technology 12 (2021) 170-185. https://doi.org/10.1016/j.jmrt.2021.02.066

W. Li, J. Hao, S. Mu, W. Liu, Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chloride-ethylene glycol deep eutectic solvent, Applied Surface Science 507 (2020) 144889. https://doi.org/10.1016/j.apsusc.2019.144889

B. Tury, M. Lakatos-Varsányi, S. Roy, Ni-Co alloys plated by pulse currents, Surface and Coatings Technology 200(24) (2006) 6713-6717. https://doi.org/10.1016/j.surfcoat.2005.10.008

J. Feng, L. Qiao, C. Liu, P. Zhou, W. Feng, H. Pan, Triggering efficient reconstructions of Co/Fe dual-metal incorporated Ni hydroxide by phosphate additives for electrochemical hydrogen and oxygen evolutions, Journal of Colloid and Interface Science 657 (2024) 705-715. https://doi.org/10.1016/j.jcis.2023.11.167

W. Li, J. Hao, W. Liu, S. Mu, Electrodeposition of nano Ni-Co alloy with (220) preferred orientation from choline chloride-urea: Electrochemical behavior and nucleation mechanism, Journal of Alloys and Compounds 853 (2021) 157158. https://doi.org/10.1016/j.jallcom.2020.157158

C. Lupi, D. Pilone, Electrodeposition of nickel-cobalt alloys: the effect of process parameters on energy consumption, Minerals Engineering 14(11) (2001) 1403-1410. https://doi.org/10.1016/S0892-6875(01)00154-6

D. V. Burlyaev, A. E. Tinaeva, K. E. Tinaeva, O. A. Kozaderov, Electrodeposition of zinc-nickel coatings from glycine-containing ammonium-chloride electrolyte, Protection of Metals and Physical Chemistry of Surfaces 56(3) (2020) 552-559. https://doi.org/10.1134/S2070205120030077

N. R. Abishova, U. M. Gurbanova, R. G. Huseynova, A. Sh. Aliyev, Electrodeposition of cobalt from alkaline glycine electrolyte, Azerbaijan Chemical Journal 2 (2022) 113-120. https://doi.org/10.32737/0005-2531-2022-2-113-120

N. R. Abishova, G. S. Aliyev, U. M. Gurbanova, Y. A. Nuriyev, S. A. Huseynova, Study of electrodeposition of nickel from alkaline glycine electrolytes, Azerbaijan Chemical Journal 4 (2021) 20-24. https://doi.org/10.32737/0005-2531-2021-4-20-24

M. Schwartz, N. V. Myung, K. Nobe, Electrodeposition of Iron Group-Rare Earth Alloys from Aqueous Media, Journal of The Electrochemical Society 151(7) (2004) 468-477. https://doi.org/10.1149/1.1751196

N. V. Sotskaya, O. V. Dolgikh, Nickel electroplating from glycine containing baths with different pH, Prototection of Metals 44(5) (2008) 479-486. https://doi.org/10.1134/S0033173208050123

M. C. Esteves, P. T. A. Sumodjo, E. J. Podlaha, Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition, Electrochimica Acta 56(25) (2011) 9082-9087. https://doi.org/10.1016/j.electacta.2011.06.079

A. J. Critelli, P. T. A. Sumodjo, M. Bertotti, R. M. Torresi, Influence of glycine on Co electrodeposition: IR spectroscopy and near-surface pH investigations, Electrochimica Acta 260 (2018) 762-771. https://doi.org/10.1016/j.electacta.2017.12.032

V. P. Graciano, I. Susana, C. de Torresi, Co-Ni anomalous codeposition studies: mechanism and effects of glycine, ECS Meeting Abstracts 02(20) (2017) 994. https://doi.org/10.1149/MA2017-02/20/994

A. Brenner, Electrodeposition of Alloys. Principle and Practice, Academic Press, New York, 1963.

A. N. Сorreia, S. A. S. Machado, Anodic linear sweep voltammetric analysis of Ni-Co alloys electrodeposited from dilute sulfate baths, Journal of Applied Electrochemistry 33 (2003) 367-372. https://doi.org/10.1023/A:1024457930014

N. Zech, E. J. Podlaha, D. Landolt, Anomalous Codeposition of Iron Group Metals: I. Experimental Results, Journal of The Electrochemical Society 146(8) (1999) 2886-2891. https://doi.org/10.1149/1.1392024

A.E. Angkawijaya, A.E. Fazary, S. Ismadji, Y.H. Ju, Cu(II), Co(II), and Ni(II)-antioxidative phenolate-glycine peptide systems: an insight into its equilibrium solution study, Journal of Chemical & Engineering Data 57(12) (2012) 3443-3451. https://doi.org/10.1021/je300589r

U. Lačnjevac, B.M. Jović, V.D. Jović, Electrodeposition of Ni, Sn and Ni-Sn alloy coatings from pyrophosphate-glycine bath, Journal of The Electrochemical Society 159(5) (2012) 310-318. https://doi.org/10.1149/2.042205jes

N.V. Krstajić, Lj. Gajić-Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, V.D. Jović, Non-noble metal composite cathodes for hydrogen evolution. Part I: The Ni-MoOx coatings electrodeposited from Watt’s type bath containing MoO3 powder particles, International Journal of Hydrogen Energy 36(11) (2011) 6441-6449. https://doi.org/10.1016/j.ijhydene.2011.02.105

Yu. V. Pleskov, V. Yu. Filinovskii, The rotating disc electrode. Consultants Bureau Plenum, New York, USA, 1976, p. 344. ISBN: 978-0306109126

W. Li, N. Jiang, B. Hu, X. Liu, F. Song, G. Han, T.J. Jordan, T.B. Hanson, T.L. Liu, Y. Sun, Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs, Chem 4(3) (2018) 637-649. https://doi.org/10.1016/j.chempr.2017.12.019

Published

01-04-2025

Issue

Section

Electrodeposition and coatings

How to Cite

Electrodeposition of Ni-Co thin films from ammonia-chloride electrolyte: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(3), 2666. https://doi.org/10.5599/jese.2666

Similar Articles

1-10 of 216

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)