Study of electrochemical deposition of Ni-Mo thin films from alkaline electrolytes

  • Ulviyya Magsud Gurbanova Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, AZ 1143, Baku, H. Javid 113, Azerbaijan
  • Dunya Mahammad Babanly Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, AZ 1143, Baku, H. Javid 113, Azerbaija and French Azerbaijani University (UFAZ), AZ1010, Baku, Nizami 189, Azerbaijan
  • Ruhangiz Gurmuz Huseynova Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, AZ 1143, Baku, H. Javid 113, Azerbaijan
  • Dilgam Babir Tagiyev Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev, Azerbaijan National Academy of Sciences, AZ 1143, Baku, H. Javid 113, Azerbaijan
Keywords: Ni-Mo co-deposition, electrodeposition, potentiodynamic polarization, ammonium hydroxide, platinum substrate, nickel substrate

Abstract

The process of co-deposition of Ni with Mo from alkaline electrolytes was studied by taking linear and cyclic polarization curves of Pt electrode at various concentrations of initial components and potential scan rates. Solutions of Na2MoO4∙2H2O and NiSO4∙7H2O were used as sources of ions of the main components in NH4OH electrolyte. It was found that co-deposition of nickel with molybdenum goes through the oxide formation stage, and a solid solution of these two metals is deposited on the cathode surface. The film obtained at constant current on Ni electrode under optimal conditions was found amorphous, but additional thermal treatment at 500 °C for one hour made it polycrystalline. This was confirmed by peaks in X-ray diffraction patterns, corresponding to NiMoO4, Ni, and MoO3. The proposed electrolyte and electrolysis conditions allow to obtain thin films with molybdenum content ranging from 17.1 to 50.9 at.%. The co-deposition of Ni with Mo is limited by diffusion of these ions to the cathode surface. The knowledge of the mechanism of co-deposition of Ni and Mo will make possible a selection of optimal conditions for deposition of alloys of the required composition with satisfactory electrocatalytic properties.

Downloads

Download data is not yet available.

References

[1] B.E.Conway, L.Bai, M.A. Sattar, Int. J. Hydrogen Energy. 12(9) (1987) 607–621, DOI:10.1016/0360-3199(87)90002-4.
[2] M.R.Gennaro de Chialvo, A.C. Chialvo, Journal of Electroanalytical Chemistry. 448(1) (1998) 87–93, DOI:10.1016/S0022-0728(98)00011-4.
[3] J.M.Jakšić, M.V.Vojnović, N.V.Krstajić, Electrochimica Acta. 45(25–26) (2000) 4151–4158, DOI:10.1016/S0013-4686(00)00549-1.
[4] A.Sh.Aliyev, R.G.Guseynova, U.M.Gurbanova, D.M.Babanly, V.N.Fateev, J.V.Pushkareva, D.B.Tagiyev, Chemical Problems. 16(3) (2018) 283–306, DOI:10.32737 / 2221-8688-2018-3-283-306.
[5] P.Kedzierzawski, D.Oleszak, M.Janik Czachor, Materials Science and Engineering: A. 300(1–2) (2001) 105–112, DOI:10.1016/S0921-5093(00)01672-5.
[6] S.D.De la Torre, D.Oleszak, A.Kakitsuji, K.Miyamoto, H.Miyamoto, S.R.Martinez, C.F.Almeraya, V.A.Martinez, J.D. Rois, Materials Science and Engineering: A. 276(1–2) (2000) 226–235, DOI:10.1016/S0921-5093(99)00156-2.
[7] G.L.Goswami, S.Kumar, R.Galun, B.L. Lasers in Engineering. 13(1) (2003) 1–6.
[8] V.A.Majidzade, A.Sh.Aliyev, D.M.Babanly, M.Elrouby and D.B.Tagiyev, Аcta Chemical Slovenica. (2019) 155–162, DOI:10.17344/acsi.2018.4733.
[9] U.M.Gurbanova, Azerbaijan Chemical Journal. 4 (2019) 59-64, DOI:10.32737/0005-2531-2019-4-59-64.
[10] J.Aikaitë, O.Gylienë, O.Nivinskienë, Chemija Vilnius. 14(3) (2003) 135-139.
[11] У.М. Курбанова, Ж.Нахчыванское отделение Академии Наук Азербайджана. 2 (2019) 60-67.
[12] E.J.Podlaha, D.Landolt, Journal of the Electrochemical Society. 143(3) (1996) 885–892.
[13] C.Ma, S.C.Wang, F.C.Walsh, Transactions of the IMF. 93(2) (2015) 104–112, DOI:10.1179/0020296714Z.000000000218.
[14] N.Miao, J.Jiang, W.Wu, Journal of Nanomaterials. (2018) 1–11, DOI:10.1155/2018/1817542.
[15] N.B.Panah, I.Danaee, M.Payehghadr, A.Madahi, Аcta Chemical Slovenica, 2018, 312-318, DOI:10.17344/acsi.2017.3953.
[16] E.J.Podlaha, D.Landolt, Journal of the Electrochemical Society. 143(3) (1996) 893–899, DOI:10.1149/1.1836554.
[17] E.Chassaing, N.Portail, A–F.Levy, G.Wang, Journal of Applied Electrochemistry. 34(11) (2004) 1085–1091.
[18] M.Donten, H.Cesiulis, Z.Stojek, Electrochimica Acta. 50(6) (2005) 1405–1412, DOI:10.1016/j.electacta.2004.08.028.
[19] M.Donten, H.Cesiulis, Z.Stojek, Electrochimica Acta. 45(20) (2000) 3389–3396, DOI:10.1016/S0013-4686(00)00437-0.
[20] L.S.Sanches, S.H.Domingues, A.Carubelli, L.H.Mascaro, Journal of the Brazilian Chemical Society. 14(4) (2003) 556–563, DOI:10.1590/S0103-50532003000400011.
[21] L.S.Sanches, S.H.Domingues, C.E.B.Marino, L.H.Mascaro, Electrochemistry Communications. 6 (2004) 543–548, DOI:10.1016/j.elecom.2004.04.002.
[22] V.D.Jovic´, B.M.Jovic´, G.R.Stafford, N.V.Krstajic´, Z.Twardowski, In: SURFIN 2002. Chicago. (2002) 76–84.
[23] N.V.Krstajic´, L.Gajic-Krstajic´, U.Lacnjevac, B.M.Jovic´, S.Mora, V.D.Jovic, Int. J. Hydrogen Energy. 36(11) (2011) 6441–6449, DOI:10.1016/j.ijhydene.2011.02.105.
[24] J.Gustavsson, C.Hummelgård, J.Bäckström, I.O.Wallinder, S.M.H.Rahman, G.Lindbergh, S.Eriksson, A.Cornell, Journal of Electrochemical Science and Engineering. 2(3) (2012) 105-120, https://doi.org/10.5599/jese.2012.0015.
[25] А.К.Бабко, А.Т. Пилипенко, Колориметрический анализ. (1951) 366–368.
[26] Н.П.Федотьев, Н.Н.Бибиков, П.М.Вячеславов, С.Я.Грилихес, Электрохимические сплавы, М.-Л. «Машгиз». (1962) 312.
[27] Ю.М.Полукаров, К.М.Горбунова, Некоторые вопросы теории электроосаждения сплавов. Исследование смещения потенциалов разряда ионов при образовании сплавов. ЖФХ. 30(4) (1956) 878–881.
[28] Ю.М.Полукаров, К.М.Горбунова, Электроосаждение сплавов/В кн. Итоги науки. Электрохимия. Электроосаждение металлов и сплавов. 1 (1968) 259.
[29] A.Lasia, A.Rami, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 294(1–2) (1990) 123–141, DOI:10.1016/0022-0728(90)87140-F.
[30] Y.Choquette, L.Brossard, A.Lasia, H.Menard, Journal of the Electrochemical Society. 137(6) (1990) 1723–1730.
[31] L.O.Case, A.Kjrohn, Journal of the Electrochemical Society. 105(9) (1958) 512–520.
[32] E.Chassaing, K.V.Quang, R.Wiart, Journal of Applied Electrochemistry. 19(6) (1989) 839–844.
[33] D.W.Ernst, M.L.Holt, Journal of the Electrochemical Society. 105(11) (1958) 686–692, DOI:10.1149 / 1.2428691.
[34] Y.Zeng, Z.Li, M.Ma, S.Zhou, Electrochemistry Communications. 2(1) (2000) 36–38, DOI:10.1016 / S1388-2481 (99) 00137-X.
[35] E.Beltowska–Lehman, P.Indyka, Thin Solid Films. 520(6) (2012) 2046–2051, DOI:10.1016/j.tsf.2011.10.024.
[36] U.Lacnjevac, B.M.Jovic, Z.Bascarevic, V.M.Maksimovic, V.D.Jovic, Electrochimica Acta. 54(11) (2009) 3115–3123, DOI:10.1016/j.electacta.2008.11.068.
[37] Ю.М.Каргин, В.В.Кондратина, Г.К.Будников, Н.А.Улахович, Электрохимическое восстановление бифункциональных органических соединений. Изв. АН ССР, сер. Химическая. 11 (1971) 2436–2439.
[38] V.D.Jovic, Zaštita Materijala. 52(2) (2011) 95–100.
[39] V.D.Jovic, B.M.Jovic, U.Lacnjevac, G.Brankovic, S.Bernik, A.Recnik, Electrochimica Acta. 55(13) (2010) 4188–4193, DOI:10.1016/j.electacta.2010.02.065
Published
25-12-2020
Section
Electrochemical Science