Electrodeposition of Bi-Se thin films involving ethylene glycol based electrolytes

  • Sevinj Javadova Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagıyev Azerbaijan National Academy of Sciences (ANAS), Baku, AZ 1143, Azerbaijan
  • Vusala Asim Majidzade Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagıyev Azerbaijan National Academy of Sciences (ANAS), Baku, AZ 1143, Azerbaijan https://orcid.org/0000-0003-0560-5263
  • Akif Shikhan Aliyev Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagıyev Azerbaijan National Academy of Sciences (ANAS), Baku, AZ 1143, Azerbaijan https://orcid.org/0000-0003-0560-5263
  • Asmat Nizami Azizova Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagıyev Azerbaijan National Academy of Sciences (ANAS), Baku, AZ 1143, Azerbaijan https://orcid.org/0000-0003-0560-5263
  • Dilgam Babir Tagiyev Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagıyev Azerbaijan National Academy of Sciences (ANAS), Baku, AZ 1143, Azerbaijan
Keywords: Bismuth triselenide, ethylene glycol, thin films, polarization
Graphical Abstract

Abstract

The work is devoted to the electrochemical deposition of Bi-Se thin films from ethylene glycol-based electrolytes. The studies have been carried out by potentiodynamic and galvanostatic methods under various conditions, using Pt and Ni electrodes. By recording cyclic and linear polarization curves, the potential range of deposition of thin Bi-Se films on Pt (-0.75 to -1.2 V) and Ni (0.2 to -0.85 V) electrodes was determined. A comparison of the polarization curves of two electrodes showed that co-electrodeposition of Bi and Se occurs in approximately the same potential range. In order to find the optimal mode and composition of the electrolyte, the effect of various factors (concentration of initial components, temperature, etc.) on the process of co-electrodeposition of Bi with Se was studied. In addition, the samples of Bi-Se thin films obtained on Ni electrodes using the galvanostatic method were studied by scanning electron microscope (SEM) and X-ray phase analysis. The results of X-ray phase analysis confirmed the formation of thin Bi2Se3 films with and without additional heat treatment step. Elemental analysis of obtained films carried out by EDS shows that films contained 62.79 wt. % Bi and 37.21 wt. % Se.

Downloads

Download data is not yet available.

References

R. Henríquez, C. Vasquez, N. Briones, E. Muñoz, P. Leyton, E. A. Dalchiele, International Journal of Electrochemical Science 11 (2016) 4966-4978 https://dx.doi.org/10.20964/2016.06.17.

A. Sh. Aliyev, M. Elrouby, S. F. Cafarova, Materials Science in Semiconductor Processing 32 (2015) 31-39 https://doi.org/10.1016/j.mssp.2015.01.006.

A. H. Munshi, N. Sasidharan, S. Pinkayan, K. L. Barth, W. S. Sampath, W. Ongsakul, Solar Energy 173 (2018) 511-516 https://doi.org/10.1016/j.solener.2018.07.090.

A. Sh. Aliyv, V. A. Majidzade, N. Sh. Soltanova, D. B. Tagiyev, V. N. Fateev, Chemical Problems 16 (2018) 178-185 https://doi.org/10.32737/2221-8688-2018-2-178-185.

G. M. Hüseynov, N. A. Mammadova, H. A. Imanov, Chemical Problems 15 (2017) 329-334 https://doi.org/10.32737/2221-8688-2017-3-329-334.

V. N. Fateev, O .K. Alexeeva, S. V. Korobtsev, E. A. Seregina, T. V. Fateeva, A. S. Grigoriev, A. Sh. Aliyev, Chemical Problems 16 (2018) 453-483 https://doi.org/10.32737/2221-8688-2018-4-453-483.

T. L. Kulova, I. I. Nikolaev, V. N. Fateev, A. Sh. Aliyev, Chemical Problems 16 (2018) 9-34 https://doi.¬org/10.32737/2221-8688-2018-1-9-34.

S. D. Kharade, N. B. Pawar, V. B. Ghanwat, S. S. Mali, W. R. Bae, P. S. Patil, C. K. Hong, J. H. Kim, P. N. Bhosale, New Journal of Chemistry 37 (2013) 2821-2828 https://doi.org/10.1039/C3NJ00463E.

Y. Min, G. D. Moon, B. S. Kim, B. Lim, J. Kim, C. Y. Kang, U. Jeong, Journal of the American Chemical Society 134 (2012) 2872-2875 https://doi.org/10.1021/ja209991z.

B. Pejova, I. Grozdanov, Thin Solid Films 408 (2002) 6-10 https://doi.org/10.1016/S0040-6090(02)-00085-8.

Z. L. Sun, S. C. Liufu, L. D. Chen, Dalton Transactions 39 (2010) 10883–10887 https://doi.org/10.1039/¬C0DT00840K.

Z. L. Sun, S. C. Liufu, X. H. Chen, L. Chen, CrystEngComm 12 (2010) 2672-2674 https://doi.org/-10.1039/C002523B.

J. Waters, D. Crouch, J. Raftery, P. O'Brien, Chemistry of Materials 16 (2004) 3289-3298 https://doi.¬org/10.1021/cm035287o.

N. D. Desai, V. B. Ghanwat, K. V. Khot, S. Mali, C. Hong, P. N. Bhosale, Journal of Materials Science: Materials in Electronics 27 (2016) 2385-2393 https://doi.org/10.1007/s10854-015-4036-6.

L. Braun, G. Mussler, A. Hruban, M. Konczykowski, T. Schumann, M. Wolf, M. Münzenberg, L. Perfetti, T. Kampfrath, Nature Communications 7 (2016) 13259 https://doi.org/10.1038/ncom-ms13259.

C. Liu, H. B. Zhang, Z. Sun, K. Ding, J. Mao, Z. Shao, J. Jie, Journal of Materials Chemistry C 4 (2016) 5648-5655 https://doi.org/10.1039/C6TC01083K.

L. D. Alegria, J. R. Petta, Nanotechnology 23 (2012) 435601 https://doi.org/10.1088/0957-4484/23/-43/435601.

H. Liu, H. Cui, F. Han, X. Li, J. Wang, R. I. Boughton, Crystal Growth Design 5 (2005) 1711-1714 https://doi.org/10.1021/cg049907p.

L. Meng, H. Meng, W. Gong, W. Liu, Z. Zhang, Thin Solid Films 519 (2011) 7627-7631 https://doi.org/¬10.1016/j.tsf.2011.04.239.

C. Xiao, J. Yang, W. Zhu, J. Peng, J. Zhan, Electrochimica Acta 54 (2009) 6821-6826 https://doi.org/-10.1016/j.electacta.2009.06.089.

O. C. Monteiro, T. Trindade, F. A. Paz, J. Klinowski, J. Watersc, P. O. Brien, Journal of Materials Chemistry 13 (2003) 3006-3010 https://doi.org/10.1039/B306662M.

H. Cuia, H. Liu, X. Lia, J. Wang, F. Han, X. Zhang, R. I. Boughton, Journal of Solid State Chemistry 177 (2004) 4001-4006 https://doi.org/10.1016/j.jssc.2004.06.042.

C. Han, J. Yang, C. Yan, Y. Li, F. Liu, L. Jiang, J. Ye, Y. Liua, CrystEngComm 16 (2014) 2823-2827 https://doi.org/10.1039/C3CE42056F.

C. D. Lokhanade, B. R. Sankpal, S. D. Sartale, H. M. Pathan, M. Giersig, V. Ganeshan, Applied Surface Science 181 (2001) 413-417 https://doi.org/10.1016/S0169-4332(01)00461-5.

P. K. Nair, M. T. S. Nair, V. M. Garcia, O. L. Arenas, Y. Pena, A. Castillo, I. T. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, H. Hu, R. Suarez, M. E. Rincon, Solar Energy Materials and Solar Cells 52 (1998) 313-344 https://doi.org/10.1016/S0927-0248(97)00237-7.

V. A. Majidzade, Chemical Problems 16 (2018) 331-336 https://doi.org/10.32737/2221-8688-2018-3-331-336.

V. A. Majidzade, A. Sh. Aliyev, I. Qasimogli, P. H. Quliyev, D. B. Tagiyev, Inorganic Materials 55 (2019) 979–983 https://doi.org/10.1134/S0020168519100108.

V. A. Majidzade, A. Sh. Aliyev, P. H. Guliyev, D. M. Babanly, Journal of Electrochemical Science and Engineering 10 (2020) 1-9 http://dx.doi.org/10.5599/jese.676.

V. A. Majidzade, A. Sh. Aliyev, D. B. Tagiyev, Bulgarian Chemical Communications 52 (2020) 69-74

V. A. Majidzade, S. F. Cafarova, A. Sh. Aliyev, N. B. Farhatova, Y. A. Nuriyev, D. B. Tagiyev, Azerbaijan Chemical journal 1 (2019) 6-13 http://dx.doi.org/10.32737/0005-2531-2019-1-6-13.

V. A. Majidzade, S. F. Cafarova, A. Sh. Aliyev, D. B. Tagiyev, Azerbaijan Chemical Journal 3 (2018) 6-10 http://dx.doi.org/10.32737/0005-2531-2018-3-6-10.

V. F. Barkovsky, T. B. Gorodentseva, N. B. Toporova, Fundamentals of Physical and Chemical Methods of Analysis, M: Higher School, Russia, 1983, p. 247.

V. A. Majidzade, A. Sh. Aliyev, P. H. Guliyev, Y. N. Babayev, M. Elrouby, D. B. Tagiyev, Journal of Electrochemical Science and Engineering 8 (2018) 197-204 https://doi.org/10.5599/jese.490.

V. A. Majidzade, P. H. Quliyev, Y. Babayev, A. Sh. Aliyev, Nakhchivan State University Scientific Works 80 (2016) 140-144.

Published
25-01-2021
Section
Electrochemical Science