Synthesis and characterization of a novel non-enzymatic glucose biosensor based on polyaniline/zinc oxide/multi-walled carbon nanotube ternary nanocomposite

  • Soha Mohajeri Department of Materials and Engineering, Sharif University of Technology, Tehran, Iran
  • Abolghassem Dolati Department of Materials Science and Engineering Sharif University of Technology
  • Khashayar Yazdanbakhsh Department of Materials Science and Engineering Sharif University of Technology
Keywords: Multi-walled carbon nanotubes, zinc oxide nanoparticles, polyaniline nanofibers, electrodeposition, non-enzymatic glucose sensor


Novel polyaniline/zinc oxide/multi-walled carbon nanotube (PANI/ZnO/MWCNT) ternary nanocomposite was fabricated as a non-enzymatic glucose biosensor. Thermal chemical vapor deposition (CVD) process was employed to synthesize vertically aligned MWCNTs on stainless steel substrates coated by Co catalyst nanoparticles. In order to fabricate sensitive and reliable MWCNT-based biosensors, nanotubes density and alignment were adjusted by varying the CVD reaction time and cobalt sulfate concentration. The fabricated nanotubes were modified by ZnO particles through the potentiostatic electrodeposition technique. Optimal electrodeposition potential, electrodeposition time, and electrolyte concentration values were determined. The optimized ZnO/MWCNT nanocomposite was reinforced by polyaniline (PANI) nanofibers through the potential cycling technique, and the morphology, elemental composition, and phase structure of the fabricated nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD), respectively. The sensing mechanism of the PANI/ZnO/MWCNT electrode for the electrochemical detection of glucose was investigated, and the limit of detection and sensitivity values of the designed sensor were determined. The fast response time of the ternary nanocomposite-based sensor as well as its satisfactory stability and reproducibility, makes it a promising candidate for non-enzymatic detection of glucose in biomedical, environmental, and industrial applications.


Download data is not yet available.


D. Bruen, C. Delaney, L. Florea, D. Diamond, Sensors 17 (2017) 1866–1887.

T. Alsufyani, S. A. Fadlallah, Sensing and Bio-Sensing Research 14 (2017) 7–16.

C. Wei, C. Cheng, Y. Cheng, Y. Wang, Y. Xu, W. Du, H. Pang, Dalton Transactions 44 (2015) 17278–17285.

R. Sukor, S. Jinap, F. Asilah, F. A. Bakr, International Food Research Journal 23 (2016) 1849–1856.

L. Zhao, L. Wang, Y. Zhang, S. Xiao, F. Bi, J. Zhao, G. Gai, J. Ding, Polymers 9 (2017) 255–275.

C. Espro, S. G. Leonardi, A. Bonavita, S. Galvagno, G. Neri, Sensors 431 (2017) 90–96.

D. W. Hwang, S. Lee, M. Seo, T. D. Chung, Analytica Chimica Acta 1033 (2018) 1–34.

Y. Hu, X. Niu, H. Zhao, M. Lan, Electrochimica Acta 165 (2015) 383–389.

I. Pötzelberger, A. Mardare, A. W. Hassel, Applied Surface Science 417 (2017) 48–53.

B. K. Jena, C. R. Raj, Chemistry: A European Journal 12 (2006) 2702–2708.

T. M. B. F. Oliveira, S. Morais, Applied Sciences 8 (2018) 1925–1943.

Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Langmuir 26 (2010) 6158–6160.

P. Yáñez-Sedeño, J. M. Pingarrón, J. Riu, F. X. Rius, Trends in Analytical Chemistry 29 (2010) 939–953.

S. Mohajeri, A. Dolati, S. S. Rezaie, Journal of Chemical Sciences 131 (2019) 21-38.

C. Oncel, Y. Yurum, Fullerenes, Nanotubes and Carbon Nanostructures 14 (2006) 17–37.

J. G. Manjunatha, Journal of Electrochemical Science and Engineering 7 (2017) 39–49.

R. Prasad, B. R. Bhat, Sensors and Actuators, B: Chemical 220 (2015) 81–90.

G. K. Nezhad, A. Sarkary, Z. Khorablou, P. S. Dorraji, Iranian Journal of Pharmaceutical Research 17 (2018) 52–62.

X. Zhu, I. Yuri, X. Gan, I. Suzuki, G. Li, Biosensors & Bioelectronics 22 (2007) 1600–1604.

S. B. Valid, B. Botka, K. Kamarás, A. Zeng, S. Yitzchaik, Carbon 48 (2010) 2773–2781.

H. Zhong, R. Yuan, Y. Chai, Y. Zhang, C. Wang, F. Jia, Microchimica Acta 176 (2012) 389–395.

C. O. Santana, E. F. Southgate, J. P. B. G. Mendes, J. Dweck, E. M. Alhadeff, N. I. B. Ramirez, Journal of Electrochemical Science and Engineering 4 (2014) 165–175.

W. D. Zhang, Y. Wen, S. M. Liu, W. C. Tjiu, G. Q. Xu, L. M. Gan, Carbon 40 (2002) 1981–1989.

M. Izaki, T. Omi, Applied Physics Letters 68 (1996) 2439–2440.

F. Xu, Y. Lu, Y. Xie, Y. Liu, Materials & Design 30 (2009) 1704–1711.

S. Mohajeri, A. Dolati, S. H. Daryan, Journal of Electrochemical Science and Engineering 8 (2018) 205–217.

C. Zhang, G. Wang, M. Liu, Y. Feng, Z. Zhang, B. Fang, Electrochimica Acta 55 (2010) 2835–2840.

S. B. Kondawar, M. D. Deshpande, International Journal of Composite Materials 2 (2012) 32–36.

I. Cesarino, Electroanalysis 23 (2011) 2586–2593.

D. K. Singh, P. K. Iyer, P. K. Giri, Diamond and Related Materials 19 (2010) 1281–1288.

A. Cao, C. Xu, J. Liang, D. Wu, B. Wei, Chemical Physics Letters 344 (2001) 13–17.

J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, F. S. Sheu, Electrochemistry Communications 6 (2004) 66–70.

S. Malhotra, Y. Tang, P. K. Varshney, Analytical & Bioanalytical Electrochemistry 10 (2018) 699–715.

Y. Qiao, C. Li, L. S. J. Bao, Q. L. Bao, Journal of Power Sources 170 (2007) 79–84.

J. Yang, L. C. Jiang, W. D. Zhang, S. Gunasekaran, Talanta 82 (2010) 25–33.

H. Yang, C. Gong, L. Miao, F. Xu, International Journal of Electrochemical Science 12 (2017) 4958–4969.

M. H. Asif, S. M. U. Ali, O. Nur, M. Willander, C. Brännmark, P. Strålfors, U. H. Englund, F. Elinder, B. Danielsson, Biosensors & Bioelectronics 25 (2010) 2205–2211.

Z. Zhu, L. G. Gancedo, A. J. Flewitt, H. Xie, F. Moussy, W. I. Milne, Sensors 12 (2012) 5996–6022.

K. Singh, A. Umar, A. Kumar, Science of Advanced Materials 4 (2012) 994–1000.

K. Ghanbari, Z. Babaei, Analytical Biochemistry 498 (2016) 37–46.

Electrochemical Engineering