Carbon nanofiber modified with osmium based redox polymer for glucose sensing

Authors

  • Amos Mugweru Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028
  • Reaz Mahmud Physics Astronomy and Materials Science Department, Missouri State University, Springfield, Missouri 65897
  • Kartik Ghosh Physics Astronomy and Materials Science Department, Missouri State University, Springfield, Missouri 65897
  • Adam Wanekaya Chemistry Department, Missouri State University, Springfield, Missouri 65897

DOI:

https://doi.org/10.5599/jese.422

Keywords:

Cyclic voltammetry, Amperometry, Michaelis-Menten kinetics, Glucose sensors

Abstract

Electrochemical detection of glucose was performed on carbon nanofibers containing an osmium based redox polymer and using glucose oxidase enzyme. Redox polymer assembled on the nanofibers provided a more stable support that preserved enzyme activity and promoted the electrical communication to the glassy carbon electrode. The morphologies, structures, and electrochemical behavior of the redox polymer modified nanofibers were characterized by scanning electron microscope, energy dispersive spectrometer and voltammetry. The glucose oxidase showed excellent communication with redox polymer as observed with the increased activity toward glucose. Both cyclic voltammetry and amperometry showed a linear response with glucose concentration.  The linear range for glucose determination was from 1 to 12 mM with a relatively high sensitivity of 0.20±0.01 μA mM−1 for glucose oxidase in carbon nanofibers and 0.10±0.01 μA mM−1 without carbon nanofibers. The apparent Michaelis–Menten constant (Km) for glucose oxidase with carbon nanofibers was 0.99 mM. On the other hand, the Km value for the glucose oxidase without the nanofibers was 4.90 mM.

Downloads

Download data is not yet available.

References

A. Mugweru, B. L. Clark, M. V. Pishko, Electroanalysis 19 (2007) 453-458.

A. Mugweru, B. L. Clark, M. V. Pishko, Journal of Diabetes Science and Technology 1 (2007) 366-371.

A. Heller, Current Opinion in Chemical Biology 10 (2006) 664-672.

P. Åsberg, O. Inganäs, Biosensors & Bioelectronics 19 (2003) 199-207.

Y.-T. Wang, L. Yu, Z.-Q. Zhu, J. Zhang, J.-Z. Zhu, C.-H. Fan, Sensors and Actuators B: Chemical 136 (2009) 332-337.

A. Heller, Physical Chemistry Chemical Physics 6 (2004) 209-216.

S. Cosnier, A. Le Goff, M. Holzinger, Electrochemistry Communications 38 (2014) 19-23.

L.M. Lu, L. Zhang, F.L. Qu, H.X. Lu, X.B. Zhang, Z.S. Wu, S.Y. Huan, Q.A. Wang, G.L. Shen, R.Q. Yu, Biosensors and Bioelectronics 25 (2009) 218-223.

S. Xi, Sensors and Actuators A: Physical 198 (2013) 15-20.

M. Rezaeinasab, Electroanalysis 29 (2017) 423-432.

X. Zhang, D. Liu, L. Li, T. You, Scientific Reports 5 (2015) 9885.

S.-G. Hong, Biotechnology and Bioprocess Engineering 21 (2016) 573-579.

H. Liang, S. Jiang, Q. Yuan, G. Li, F. Wang, Z. Zhang and J. Liu, Nanoscale 8 (2016) 6071-6078.

D. Liu, X. Zhang, T. You, ACS Applied Materials & Interfaces 6 (2014) 6275-6280.

M. Scampicchio, A. Arecchi, A. Bianco, A. Bulbarello, C. Bertarelli, S. Mannino, Electroanalysis 22 (2010) 1056-1060.

M. Yasuzawa, Y. Omura, K. Hiura, J. Li, Y. Fuchiwaki, M. Tanaka, Analytical Sciences 31 (2015) 1111-1114.

A. Arecchi, M. Scampicchio, S. Drusch, S. Mannino, Analytica Chimica Acta 659 (2010) 133-136.

Y. Wang, L. Liu, M. Li, S. Xu, F. Gao, Biosensors & Bioelectronics 30 (2011) 107-111.

A. Seehuber, R. Dahint, The Journal of Physical Chemistry B 117 (2013) 6980-6989.

S. Huang, Y. Ding, Y. Liu, L. Su, R. Filosa, Y. Lei, Electroanalysis 23 (2011) 1912-1920.

G. Pankratova, K. Hasan, D. Leech, L. Hederstedt, L. Gorton, Electrochemistry Communications 75 (2017) 56-59.

M. Grattieri, ChemElectroChem, 3 (2016) 1884-1889.

Y. Nakabayashi, A. Omayu, S. Yagi, K. Nakamura, J. Motonaka, Analytical Sciences 17 (2001) 945-950.

M. Kirthiga, Electrochimica Acta 230 (2017) 89-97.

A. Mugweru, B. Wang, J. Rusling, Analytical Chemistry 76 (2004) 5557-5563.

M. Amos, Analytical Sciences 24 (2008) 1105-1110.

B. A. Gregg, A. Heller, The Journal of Physical Chemistry 95 (1991) 5970-5975.

V. Soukharev, N. Mano, A. Heller, Journal of the American Chemical Society 126 (2004) 8368-8369.

F. Mao, N. Mano, A. Heller, Journal of the American Chemical Society 125 (2003) 4951-4957.

P. Denisevich, H.D. Abruna, C.R. Leidner, T.J. Meyer, R.W. Murray, Inorganic Chemistry 21 (1982) 2153-2161.

A. Mugweru, Electroanalysis 19 (2007) 453-458.

A. Mugweru, Journal of Diabetes Science and Technology 1 (2007) 366.

D. Xu, Analytical Biochemistry 489 (2015) 38.

T. Y. Tekbasoglu, T. Soganci, M. Ak, A. Koca, M. K. Sener, Biosensors & Bioelectronics 87 (2017) 81-88.

H. Wang, Sensors and Actuators: B, Chemical 216 (2015) 298-306.

H. J. Hecht, H. M. Kalisz, J. Hendle, R. D. Schmid, D. Schomburg, Journal of Molecular Biology 229 (1993)153-172.

L. Wang, J. Yu, Y. Zhang, H. Yang, L. Miao, Y. Song, ACS Applied Materials & Interfaces 9 (2017) 9089-9095.

J. Chen, Journal of the Electrochemical Society 164 (2017) B66-B73.

M. Altikatoglu, Y. Basaran, C. Arioz, A. Ogan, H. Kuzu, Applied Biochemistry and Biotechnology 160 (2010) 2187-2197.

V. Buk, Materials Science & Engineering: C, Materials for Biological Application 74 (2017) 307-314.

X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, Analytical Biochemistry 369 (2007) 71-79.

Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, L. Tayebi, Analytical Biochemistry 519 (2017) 19-26.

Published

22-12-2017

Issue

Section

Electrochemical Science

How to Cite

Carbon nanofiber modified with osmium based redox polymer for glucose sensing. (2017). Journal of Electrochemical Science and Engineering, 7(4), 181-191. https://doi.org/10.5599/jese.422

Similar Articles

1-10 of 227

You may also start an advanced similarity search for this article.