Correlation between diffusion and kinetic behaviour of metal hydride battery: voltammetry and impedance analyses

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2655

Keywords:

State of charge, hydrogen storage alloys, performance analysis, Nyquist plots, voltage window

Abstract

The performance of metal hydride batteries depends on their electrochemical and kinetic behaviour, which varies with the state of charge (SoC). This study explores these characteristics in nickel-metal hydride batteries with A2B7 and AB5 electrodes, focusing on how SoC influences ion diffusion and charge transfer kinetics of the batteries. Electro¬chemical impedance spectroscopy and cyclic voltammetry (CV) were used to analyse these behaviours, while X-ray diffraction provided structural insights and scanning electron microscopy proposed morphological concepts. Results reveal a positive correlation between SoC and both diffusion and kinetic behaviour. The value of fitting resistances decreases as SoC increases, reaching a minimum at 100 % SoC, where hydrogen diffusion is optimized. CV data supports this phenomenon, showing a more negative peak cathodic current (Ip,c) at higher SoC, indicating improved kinetics likely due to enhanced ion availability. Additionally, voltage window analysis showed maximum hydrogen storage at 100 % SoC for AB5 and 50 % for A2B7. Structurally, larger particle sizes and crystallites at higher SoC correlate with increased hydrogen desorption capacity. A2B7 exhibited superior diffusion kinetics, while AB5 demonstrated better discharge behaviour, highlighting how SoC-dependent diffusion and kinetics impact Ni-MH performance.

Downloads

Download data is not yet available.

References

S. O. Rey, J. A. Romero, L. T. Romero, À. F. Martínez, X. S. Roger, M. A. Qamar, J. L. Domínguez-García, L. Gevorkov, Powering the Future: A Comprehensive Review of Battery Energy Storage Systems, Energies 16 (2023) 6344. https://doi.org/10.3390/en16176344

Z. Yi, Z. Chen, K. Yin, L. Wang, K. Wang, Sensing as the key to the safety and sustainability of new energy storage devices, Protection and Control of Modern Power Systems 8 (2023) 27. https://doi.org/10.1186/s41601-023-00300-2

S.O. Rey, J.A. Romero, L.T. Romero, À.F. Martínez, X.S. Roger, M.A. Qamar, J.L. Domínguez-García, L. Gevorkov, Powering the Future: A Comprehensive Review of Battery Energy Storage Systems, Energies 16 (2023) 6344. https://doi.org/10.3390/en16176344.

A. Saldarini, M. Longo, M. Brenna, D. Zaninelli, Battery Electric Storage Systems: Advances, Challenges, and Market Trends, Energies 16 (2023) 7566. https://doi.org/10.3390/en16227566

M. Iqbal, A. Benmouna, M. Becherif, S. Mekhilef, Survey on Battery Technologies and Modeling Methods for Electric Vehicles, Batteries 9 (2023) 185. https://doi.org/10.3390/batteries9030185

W. Xie, K. Zhu, H. Yang, W. Yang, Advancements in Achieving High Reversibility of Zinc Anode for Alkaline Zinc-Based Batteries, Advanced Materials 36 (2024) 2306154. https://doi.org/10.1002/adma.202306154

R. Martínez-Sánchez, A. Molina-García, A. P. Ramallo-González, Regeneration of Hybrid and Electric Vehicle Batteries: State-of-the-Art Review, Current Challenges, and Future Perspectives, Batteries 10 (2024) 101. https://doi.org/10.3390/batteries10030101

Reportlinker, Global Nickel-Metal Hydride (Ni-MH) Battery Market 2018-2022. https://www.prnewswire.com/news-releases/global-nickel-metal-hydride-ni-mh-battery-market-2018-2022-300667854.html (accessed November 2, 2024).

NiMH Battery Industry 2024. https://www.reportlinker.com/market-report/Battery/474883/NiMH-Battery (accessed November 2, 2024).

ReportLinker, Global Battery Market 2023-2027, GlobeNewswire News Room (2022). https://www.globenewswire.com/en/news-release/2022/12/30/2581197/0/en/Global-Battery-Market-2023-2027.html (accessed November 2, 2024).

B. Ash, V. S. Nalajala, A. K. Popuri, T. Subbaiah, M. Minakshi, Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes, Nanomaterials 10 (2020) 1878. https://doi.org/10.3390/nano10091878

M. Patel, K. Mishra, R. Banerjee, J. Chaudhari, D. K. Kanchan, D. Kumar, Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems, Journal of Energy Chemistry 81 (2023) 221-259. https://doi.org/10.1016/j.jechem.2023.02.023

L. Ouyang, J. Huang, H. Wang, J. Liu, M. Zhu, Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review, Materials Chemistry and Physics 200 (2017) 164-178. https://doi.org/10.1016/j.matchemphys.2017.07.002

K. Young, S. Yasuoka, Capacity Degradation Mechanisms in Nickel/Metal Hydride Batteries, Batteries 2 (2016) 3. https://doi.org/10.3390/batteries2010003

W. H. Zhu, Y. Zhu, B. J. Tatarchuk, Self-discharge characteristics and performance degradation of Ni-MH batteries for storage applications, International Journal of Hydrogen Energy 39 (2014) 19789-19798. https://doi.org/10.1016/j.ijhydene.2014.09.113

F. Feng, M. Geng, D. O. Northwood, Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review, International Journal of Hydrogen Energy 26 (2001) 725-734. https://doi.org/10.1016/S0360-3199(00)00127-0

Y. Kang, K. Zhang, X. Lin, Surface Modifications of Magnesium-Based Materials for Hydrogen Storage and Nickel-Metal Hydride Batteries: A Review, Coatings 13 (2023) 1100. https://doi.org/10.3390/coatings13061100

Y. Xu, F.M. Mulder, Non-alloy Mg anode for Ni-MH batteries: Multiple approaches towards a stable cycling performance, International Journal of Hydrogen Energy 46 (2021) 19542-19553. https://doi.org/10.1016/j.ijhydene.2021.03.073

T. Franke, J. F. Krems, Understanding charging behaviour of electric vehicle users, Transportation Research Part F: Traffic Psychology and Behaviour 21 (2013) 75-89. https://doi.org/10.1016/j.trf.2013.09.002

S. Geng, Y. Zhang, B. Xie, A. Shi, Y. Ning, S. Lou, G. Yin, Challenges and Opportunities for Fast-Charging Batteries, The Journal of Physical Chemistry C 127 (2023) 15021-15034. https://doi.org/10.1021/acs.jpcc.3c01927

S. R. Salkuti, Electrochemical batteries for smart grid applications, International Journal of Electrical and Computer Engineering (IJECE) 11 (2021) 1849-1856. http://doi.org/10.11591/ijece.v11i3.pp1849-1856

S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, K. Nakura, Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges), Journal of Power Sources 258 (2014) 210-217. https://doi.org/10.1016/j.jpowsour.2014.02.018

J. Kwon, K. Eom, Effects of Oversaturated Cathode Humidity Conditions on the Performance Degradation of PEMFCs and Diagnostic Signals of Warburg Impedance under Low Humidity Conditions, The Journal of Physical Chemistry C 125 (2021) 10824-10834. https://doi.org/10.1021/acs.jpcc.1c02805

R. Tiwari, D. Kumar, D. K. Verma, K. Parwati, P. Ranjan, R. Rai, S. Krishnamoorthi, R. Khan, Fundamental chemical and physical properties of electrolytes in energy storage devices: A review, Journal of Energy Storage 81 (2024) 110361. https://doi.org/10.1016/j.est.2023.110361

R. Nölle, K. Beltrop, F. Holtstiege, J. Kasnatscheew, T. Placke, M. Winter, A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup, Materials Today 32 (2020) 131-146. https://doi.org/10.1016/j.mattod.2019.07.002

S. Cruz-Manzo, P. Greenwood, R. Chen, An Impedance Model for EIS Analysis of Nickel Metal Hydride Batteries, J. Electrochem. Soc. 164 (2017) A1446. https://doi.org/10.1149/2.0431707jes.

I. D. Wijayanti, V. A. Yartys, Studies of the effect of Hf doping on the electrochemical performance of C15 Laves type metal hydride battery anode alloys, Journal of Energy Storage 60 (2023) 106627. https://doi.org/10.1016/j.est.2023.106627

I. D. Wijayanti, R. Denys, Suwarno, A. A. Volodin, M. V. Lototskyy, M. N. Guzik, J. Nei, K. Young, H. J. Roven, V. Yartys, Hydrides of Laves type Ti-Zr alloys with enhanced H storage capacity as advanced metal hydride battery anodes, Journal of Alloys and Compounds 828 (2020) 154354. https://doi.org/10.1016/j.jallcom.2020.154354

D. Zhu, W. Zhou, Z. Tang, Y. Heng, K. Liu, J. Li, L. Xie, Y. Chen, SOC-dependent high-rate dischargeability of AB5-type metal hydride anode: Mechanism linking phase transition to electrochemical H-desorption kinetics, International Journal of Hydrogen Energy 44 (2019) 15278-15286. https://doi.org/10.1016/j.ijhydene.2019.04.078

Q. Li, D. Yi, G. Dang, H. Zhao, T. Lu, Q. Wang, C. Lai, J. Xie, Electrochemical Impedance Spectrum (EIS) Variation of Lithium-Ion Batteries Due to Resting Times in the Charging Processes, World Electric Vehicle Journal 14 (2023) 321. https://doi.org/10.3390/wevj14120321

T. Osaka, T. Momma, D. Mukoyama, H. Nara, Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery, Journal of Power Sources 205 (2012) 483-486. https://doi.org/10.1016/j.jpowsour.2012.01.070

R. Alicki, D. Gelbwaser-Klimovsky, A. Jenkins, E. von Hauff, Dynamical theory for the battery’s electromotive force, Physical Chemistry Chemical Physics 23 (2021) 9428-9439. https://doi.org/10.1039/D1CP00196E

F. Huet, A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries, Journal of Power Sources 70 (1998) 59-69. https://doi.org/10.1016/S0378-7753(97)02665-7

E. Karden, S. Buller, R. W. De Doncker, A method for measurement and interpretation of impedance spectra for industrial batteries, Journal of Power Sources 85 (2000) 72-78. https://doi.org/10.1016/S0378-7753(99)00385-7

J. Yang, Y. Xia, Enhancement on the Cycling Stability of the Layered Ni-Rich Oxide Cathode by In-Situ Fabricating Nano-Thickness Cation-Mixing Layers, Journal of The Electrochemical Society 163 (2016) A2665. https://doi.org/10.1149/2.0841613jes

M. Tliha, C. Khaldi, J. Lamloumi, AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area, Journal of Materials Engineering and Performance 25 (2016) 1578-1585. https://doi.org/10.1007/s11665-016-1980-0

T. F. Landinger, G. Schwarzberger, A. Jossen, High frequency impedance characteristics of cylindrical lithium-ion cells: Physical-based modeling of cell state and cell design dependencies, Journal of Power Sources 488 (2021) 229463. https://doi.org/10.1016/j.jpowsour.2021.229463

X. Zhou, K. Young, J. West, J. Regalado, K. Cherisol, Degradation mechanisms of high-energy bipolar nickel metal hydride battery with AB5 and A2B7 alloys, Journal of Alloys and Compounds 580 (2013) S373-S377. https://doi.org/10.1016/j.jallcom.2013.03.014

N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, Journal of Alloys and Compounds 202 (1993) 183-197. https://doi.org/10.1016/0925-8388(93)90538-X

I. D. Wijayanti, L. Mølmen, R. V. Denys, J. Nei, S. Gorsse, M. N. Guzik, K. Young, V. Yartys, Studies of Zr-based C15 type metal hydride battery anode alloys prepared by rapid solidification, Journal of Alloys and Compounds 804 (2019) 527-537. https://doi.org/10.1016/j.jallcom.2019.06.324

A. A. Volodin, R. V. Denys, C. Wan, I. D. Wijayanti, Suwarno, B. P. Tarasov, V.E . Antonov, V. A. Yartys, Study of hydrogen storage and electrochemical properties of AB2-type Ti0.15Zr0.85La0.03Ni1.2Mn0.7V0.12Fe0.12 alloy, Journal of Alloys and Compounds 793 (2019) 564-575. https://doi.org/10.1016/j.jallcom.2019.03.134

N. Küçükdeveci, I. Akay Erdoğan, A. Binal Aybar, Effects of Zr addition on electrochemical characteristics of MgTiMnNi hydrogen storage alloys, International Journal of Hydrogen Energy 48 (2023) 18753-18760. https://doi.org/10.1016/j.ijhydene.2023.01.307

S. Effendy, J. Song, M. Z. Bazant, Analysis, Design, and Generalization of Electrochemical Impedance Spectroscopy (EIS) Inversion Algorithms, Journal of the Electrochemical Society 167 (2020) 106508. https://doi.org/10.1149/1945-7111/ab9c82

W. Lai, S. M. Haile, Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria, Journal of the American Ceramic Society 88 (2005) 2979-2997. https://doi.org/10.1111/j.1551-2916.2005.00740.x

P. D. Vidts, J. Delgado, R. E. White, Mathematical Modeling for the Discharge of a Metal Hydride Electrode, Journal of The Electrochemical Society 142 (1995) 4006. https://doi.org/10.1149/1.2048454

S. Malifarge, B. Delobel, C. Delacourt, Determination of Tortuosity Using Impedance Spectra Analysis of Symmetric Cell, Journal of The Electrochemical Society 164 (2017) E3329. https://doi.org/10.1149/2.0331711jes

A. M. Svensson, L. O. Valøen, R. Tunold, Modeling of the impedance response of porous metal hydride electrodes, Electrochimica Acta 50 (2005) 2647-2653. https://doi.org/10.1016/j.electacta.2004.11.035

N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, Journal of Chemical Education 95 (2018) 197-206. https://doi.org/10.1021/acs.jchemed.7b00361

C. Iwakura, S. Nohara, N. Furukawa, H. Inoue, The possible use of polymer gel electrolytes in nickel/metal hydride battery, Solid State Ionics 148 (2002) 487-492. https://doi.org/10.1016/S0167-2738(02)00092-9

N. M. Deraz, Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles, Journal of Alloys and Compounds 501 (2010) 317-325. https://doi.org/10.1016/j.jallcom.2010.04.096

F. T. L. Muniz, M. A. R. Miranda, C. Morilla dos Santos, J. M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallographica Section A: Foundations and Advances 72 (2016) 385-390. https://doi.org/10.1107/S205327331600365X

S. Sleiman, J. Huot, Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy, Journal of Alloys and Compounds 861 (2021) 158615. https://doi.org/10.1016/j.jallcom.2021.158615

L. J. Huang, H. Wang, L. Z. Ouyang, D. L. Sun, H. J. Lin, M. Zhu, Achieving fast hydrogenation by hydrogen-induced phase separation in Mg-based amorphous alloys, Journal of Alloys and Compounds 887 (2021) 161476. https://doi.org/10.1016/j.jallcom.2021.161476

M. Geng, J. Han, F. Feng, D.O. Northwood, Hydrogen-absorbing alloys for the NICKEL-METAL hydride battery, International Journal of Hydrogen Energy 23 (1998) 1055-1060. https://doi.org/10.1016/S0360-3199(98)00020-2

N. Küçükdeveci, I. Akay Erdoğan, A. Binal Aybar, M. Anik, Electrochemical hydrogen storage properties of mechanically alloyed Mg0.8Ti0.2-xMnxNi (x = 0, 0.025, 0.05, 0.1) type alloys, International Journal of Hydrogen Energy 47 (2022) 2511-2519. https://doi.org/10.1016/j.ijhydene.2021.10.174

Published

14-04-2025

Issue

Section

Batteries and supercapacitors

How to Cite

Correlation between diffusion and kinetic behaviour of metal hydride battery: voltammetry and impedance analyses : Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(3), 2655. https://doi.org/10.5599/jese.2655

Funding data

Similar Articles

1-10 of 343

You may also start an advanced similarity search for this article.