Tailoring surface properties of functionalized graphene papers aiming to enzyme immobilization
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1099Keywords:
Sensors, graphene oxide, β-galactosidase, glucose, lactose, cyclic voltammetry
Abstract
The use of enzymes as catalysts requires recovery and reuse to make the process viable. Enzymatic immobilization changes enzyme stability, activity, and specificity. It is very important to explore new substrates for immobilization with appropriate composition and structure to improve the efficiency of the immobilized enzymes. This work explores the use of two different graphene oxide papers, one produced by oxidation route (GO) and the other by electrochemical synthesis (EG), aiming for β-galactosidase immobilization. The chemical and structural properties of these two papers were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Atomic force microscopy images showed that EG paper ensured more efficient immobilization of the enzymes on the surface of the paper. Cyclic voltammetry was used to monitor the reaction of conversion of lactose to glucose in the free enzyme solution and graphene paper immobilized enzyme solutions. The cyclic voltammetry analysis showed that immobilized enzymes on GO paper showed an improvement in the activity of β-galactose when compared to free enzyme solution, as well as enzyme immobilized on a glassy carbon electrode.
Downloads
References
L. Jin, K. Yang, K. Yao, S. Zhang, H. Tao, S.-T. Lee, Z. Liu, R. Peng, ACS Nano 6 (2012) 4864-4875. https://doi.org/10.1021/nn300217z
M. A. Z. Coelho, A. M. Salgado, B. D. Ribeiro, Enzimatic Technology (tradução: Tecnologia Enzi¬mática), EPUB, Rio de Janeiro, Brazil, 2008, p. 288. ISBN 978-85-87098-83-2 (In Portuguese)
R. Fernandez-Lafuente, Molecules (Basel, Switzerland) 22(4) (2017) 601. https://doi.org/10.3390/molecules22040601
C. D. Grande, J. Mangadlao, J. Fan, A. De Leon, J. Delgado-Ospina, J. G. Rojas, D. F. Rodrigues, R. Advincula, Macromolecular Symposia 374 (2017) 1600114. https://doi.org/10.1002/masy.201600114
F. Li, H.-Y. Yu, Y.-Y. Wang, Y. Zhou, H. Zhang, J.-M. Yao, S. Y. H. Abdalkarim, K. C. Tam, Journal of Agricultural and Food Chemistry 67 (2019) 10954-10967. https://doi.org/10.1021/acs.jafc.9b03110
F. Ning, T. Qiu, Q. Wang, H. Peng, Y. Li, X. Wu, Z. Zhang, L. Chen, H. Xiong, Food Chemistry 221 (2017) 1797-1804. https://doi.org/10.1016/j.foodchem.2016.10.101
M. M. Antunes, P. A. Russo, P. V. Wiper, J. M. Veiga, M. Pillinger, L. Mafra, D. V. Evtuguin, N. Pinna, A. A. Valente, ChemSusChem 7 (2014) 804-812. https://doi.org/10.1002/cssc.201301149
I. Beenish, M. I. Ahamed, A. M. Asiri, K. A. AlAmry, Materials Science for Energy Technologies 1 (2018) 63-69. https://doi.org/10.1016/j.mset.2018.03.003
K. Guan, Q. Liu, Y. Ji, M. Zhang, Y. Wu, J. Zhao, G. Liu, W. Jin, ChemSusChem 11 (2018) 2315-2320. https://doi.org/10.1002/cssc.201800479
R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, R. L. Shepherd, J. Chen, S. Aminorroaya-Yamini, K. Konstantinov, A. I. Minett, J. M. Razal, G. G. Wallace, Adv. Funct. Mater. 23 (2013) 5345-5354. https://doi.org/10.1002/adfm.201300765
N. D. Tissera, R. N. Wijesena, J. R. Perera, K. M. N. de Silva, G. A. J. Amaratunge, Applied Surface Science 324 (2015) 455-463. https://doi.org/10.1016/j.apsusc.2014.10.148
Y.J. Yun, W.G. Hong, W.-J. Kim, Y. Jun, B.H. Kim, Adv. Mater. 25 (2013) 5701-5705. https://doi.org/10.1002/adma.201303225
J. Liu, L. Cui, D. Losic, Acta Biomater. 9 (2013) 9243-9257. https://doi.org/10.1016/j.actbio.2013.08.016
V. K. Rana, M.-C. Choi, J.-Y. Kong, G. Y. Kim, M. J. Kim, S.-H. Kim, S. Mishra, R. P. Singh, C.-S. Ha, Macromolecular Materials and Engineering 296 (2011) 131-140. https://doi.org/10.1002/mame.201000307
X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Research 1 (2008) 203-212. https://doi.org/10.1007/s12274-008-8021-8
A. S. Godoy, Structural and functional studies of bacterial beta-galactosidase enzymes (tradução: Estudos estruturais e funcionais das enzimas beta-galactosidases de bactérias), Doctoral Thesis, Physical Institute, University of São Paulo, São Carlos (2016). https://doi.org/10.11606/T.76.2017.tde-04012017-145940
Q. Husain, Crit. Rev. Biotechnol. 30 (2010) 41-62. https://doi.org/10.3109/07388550903330497
B. Krajewska, Enzyme Microb. Technol. 35 (2004) 126-139. https://doi.org/10.1016/j.enzmictec.2003.12.013
J. Fan, J. Luo, Y. Wan, J. Membr. Sci. 538 (2017) 68-76. https://doi.org/10.1016/j.memsci.2017.05.053
D. Kishore, M. Talat, O. N. Srivastava, A. M. Kayastha, PloS one 7 (2012) e40708. https://doi.org/10.1371/journal.pone.0040708
S. C. Ray, Applications of graphene and graphene-oxide based nanomaterials, Elsevier Science, 2015, p. 39-55. https://doi.org/10.1016/C2014-0-02615-9
K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Journal of the American Chemical Society 136 (2014) 6083-6091. https://doi.org/10.1021/ja5017156
S. Lim, J. H. Han, H. W. Kang, J. U. Lee, W. Lee, Carbon Letters 30 (2020) 409-416. https://doi.org/10.1007/s42823-019-00110-3
S. M. Oliveira, J. M. Luzardo, L. A. Silva, D. C. Aguiar, C. A. Senna, R. Verdan, A. Kuznetsov, T. L. Vasconcelos, B. S. Archanjo, C. A. Achete, E. D'Elia, J. R. Araujo, Thin Solid Films 699 (2020) 137875. https://doi.org/10.1016/j.tsf.2020.137875
L. A. Silva, J. M. M. Luzardo, S. M. Oliveira, R. V. Curti, A. M. Silva, R. Valaski, R. B. Capaz, J. R. Araujo, Current Applied Physics 20 (2020) 846-852. https://doi.org/10.1016/j.cap.2020.04.004
J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, J. Zhang, S. Guo, Langmuir 26 (2010) 6083-6085. https://doi.org/10.1021/la904014z
K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nature Chemistry 2 (2010) 1015. https://doi.org/10.1038/nchem.907
W. S. Hummers, R. E. Offeman, Journal of the American Chemical Society 80 (1958) 1339-1339. https://doi.org/10.1021/ja01539a017
A. Sikora, M. Woszczyna, M. Friedemann, F. J. Ahlers, M. Kalbac, Micron 43 (2012) 479-486. https://doi.org/10.1016/j.micron.2011.11.010
X. Fan, Frontiers in Materials 1 (2015). https://doi.org/10.3389/fmats.2014.00039
X. Zuo, S. He, D. Li, C. Peng, Q. Huang, S. Song, C. Fan, Langmuir 26 (2010) 1936-1939. https://doi.org/10.1021/la902496u
A. M. Brzozowski, U. Derewenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S. A. Patkar, L. Thim, Nature 351 (1991) 491-494. https://doi.org/10.1038/351491a0
J. Rafiee, M. A. Rafiee, Z.-Z. Yu, N. Koratkar, Adv. Mater. 22 (2010) 2151-2154. https://doi.org/10.1002/adma.200903696
P. Kumar, International Journal of Engineering Trends and Technology 49 (2017) 128-136. https://doi.org/10.14445/22315381/IJETT-V49P220
S. Park, R. S. Ruoff, Nat. Nanotechnol. 4 (2009) 217. https://doi.org/10.1038/nnano.2009.58
J. Araujo, A. Silva, C. Gouvêa, E. S. Lopes, R. A. A. Santos, L. Terrazos, R. Capaz, C. A. Achete, I. Maciel, Carbon 99 (2016) 1-7. https://doi.org/10.1016/j.carbon.2015.11.059
K. L. S. Castro, R. V. Curti, J. R. Araujo, S. M. Landi, E. H. M. Ferreira, R. S. Neves, A. Kuznetsov, L. A. Sena, B. S. Archanjo, C. A. Achete, Thin Solid Films 610 (2016) 10-18. https://doi.org/10.1016/j.tsf.2016.04.042
A. Kaniyoor, R. Sundara, AIP Advances 2 (2012) 032183. https://doi.org/10.1063/1.4756995
K. Krishnamoorthy, G. S. Kim, S. J. Kim, Ultrason. Sonochem. 20 (2013) 644-649. https://doi.org/10.1016/j.ultsonch.2012.09.007
J. Ribeiro-Soares, Carbon 95 (2015) 646-652. https://doi.org/10.1016/j.carbon.2015.08.020
L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Nano Letters 11 (2011) 3190-3196. https://doi.org/10.1021/nl201432g
R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M. S. Dresselhaus, Advances in Physics 60 (2011) 413-550. https://doi.org/10.1080/00018732.2011.582251
M. E. Mendoza, E. H. M. Ferreira, A. Kuznetsov, C. A. Achete, J. Aumanen, P. Myllyperkiö, A. Johansson, M. Pettersson, B. S. Archanjo, Carbon 143 (2019) 720-727. https://doi.org/10.1016/j.carbon.2018.11.070
E. H. Martins Ferreira, M. V. O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz, C. A. Achete, A. Jorio, Physical Review B 82 (2010) 125429. https://doi.org/10.1103/PhysRevB.82.125429
A. C. Ferrari, J. Robertson, Physical Review B 61 (2000) 14095-14107. https://doi.org/10.1103/PhysRevB.61.14095
K. Castro, S. Oliveira, R. Curti, J. Araújo, L. Sassi, C. Almeida, E. Ferreira, B. Archanjo, M. Cabral, A. Kuznetsov, Electrochemical response of glassy carbon electrodes modified using graphene sheets of different sizes. Int. J. Electrochem. Sci. 13 (2018) 71-87. http://doi.org/10.20964/2018.01.02
H. Maleki, C. D. Cojocaru, C. M. A. Brett, G. M. Jenkins, J. R. Selman, JElS 145 (1998) 721-730. https://doi.org/10.1149/1.1838337
P. R. Moses, L. Wier, R. W. Murray, Analytical Chemistry 47 (1975) 1882-1886. https://doi.org/10.1021/ac60362a043
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.