Electrochemical behavior and L-tyrosine sensing properties of nanostructured Cr, Sn and La-doped α-Fe2O3 interfaces

Original scientific paper

Authors

  • Kanza Maryam Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan https://orcid.org/0000-0003-1085-1346
  • Muhammad Umar Javed Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan https://orcid.org/0009-0004-4895-6383
  • Chanda Rafique Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan https://orcid.org/0009-0006-4332-2597
  • Amir Habib Department of Physics, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin 39524, Saudi Arabia https://orcid.org/0000-0003-3391-3677
  • Adeel Afzal Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan https://orcid.org/0000-0002-6528-7300

DOI:

https://doi.org/10.5599/jese.2409

Keywords:

Metal doped ferric oxide, nonessential amino acid, biomarker, electrochemical sensors, point-of-care testing
Graphical Abstract

Abstract

L-tyrosine (Tyr) is a promising biomarker for the diagnosis and monitoring of metabolic disorders and neurodegenerative diseases. This study reports on the electrochemical properties of α-Fe2O3 nanostructures doped with Cr, Sn and La, referred to as CrFeOx, SnFeOx and LaFeOx, respectively, and their application in the enzyme-free electrochemical Tyr sensors. These disposable sensors offer accurate Tyr concentration analysis at room temperature, addressing the limitations of current point-of-care diagnostic methods. The CrFeOx, SnFeOx, and LaFeOx nanostructures serve as selective agents for binding and recognizing Tyr, deposited onto disposable graphite pencil electrodes to form the electrochemical interface. The interfacial resistance, charge-transfer kinetics, mechanism, and reversibility are studied via extensive electrochemical measurements employing electro­chemical impedance spectroscopy and cyclic voltammetry. Furthermore, differen­tial pulse voltammetry demonstrates excellent Tyr sensing performance in the concen­tration range of 0 to 80 μM with 2.65 µA µM-1 cm-2 sensitivity and 360 nM thres­hold detection limit for the best-performing CrFeOx sensors. Hence, these α-Fe2O3-based sensor systems are practical and efficient for selective Tyr detection, offering potential advancements in personalized healthcare and early disease diagnosis.

Downloads

Download data is not yet available.

References

Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu, M. Wang, J. Tu, A. Kogan, H. Zhang, T. K. Hsiai, Z. Li, W. Gao, A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat, Nature Biotechnology 38 (2020) 217-224. https://doi.org/10.1038/s41587-019-0321-x

S. Biswas, H. Naskar, S. Pradhan, Y. Wang, R. Bandyopadhyay, P. Pramanik, Simultaneous voltammetric determination of Adrenaline and Tyrosine in real samples by neodymium oxide nanoparticles grafted graphene, Talanta 206 (2020) 120176. https://doi.org/10.1016/j.talanta.2019.120176

S. K. Revanappa, I. Soni, M. Siddalinganahalli, G. K. Jayaprakash, R. Flores-Moreno, C. Banana¬kere Nanjegowda, A Fukui Analysis of an Arginine-Modified Carbon Surface for the Electro¬chemical Sensing of Dopamine, Materials 15 (2022) 6337. https://doi.org/10.3390/ma15186337

R. S. Kumar, G. K. Jayaprakash, S. Manjappa, M. Kumar, A. P. Kumar, Theoretical and electrochemical analysis of L-serine modified graphite paste electrode for dopamine sensing applications in real samples, Journal of Electrochemical Science and Engineering 12 (2022) 1243-1250. https://doi.org/10.5599/jese.1390

Z. T. Dame, F. Aziat, R. Mandal, R. Krishnamurthy, S. Bouatra, S. Borzouie, A. C. Guo, T. Sajed, L. Deng, H. Lin, P. Liu, E. Dong, D. S. Wishart, The human saliva metabolome, Metabolomics 11 (2015) 1864-1883. https://doi.org/10.1007/s11306-015-0840-5

V.C. Valsalakumar, A.S. Joseph, J. Piyus, S. Vasudevan, Polyaniline-Graphene Oxide Composites Decorated with ZrO2 Nanoparticles for Use in Screen-Printed Electrodes for Real-Time l-Tyrosine Sensing, ACS Applied Nano Materials 6 (2023) 8382-8395. https://doi.org/10.1021/acsanm.3c00659

J. B. Mistry, M. Bukhari, A. M. Taylor, Alkaptonuria, Rare Diseases 1 (2013) e27475. https://doi.org/10.4161/rdis.27475

D. Banik, S. Kundu, P. Banerjee, R. Dutta, N. Sarkar, Investigation of Fibril Forming Mechanisms of l-Phenylalanine and l-Tyrosine: Microscopic Insight toward Phenylketonuria and Tyrosinemia Type II, Journal of Physical Chemistry B 121 (2017) 1533-1543. https://doi.org/10.1021/acs.jpcb.6b12220

Z. D. Zhou, W. T. Saw, P. G. H. Ho, Z. W. Zhang, L. Zeng, Y. Y. Chang, A. X. Y. Sun, D. R. Ma, H. Y. Wang, L. Zhou, K. L. Lim, E.-K. Tan, The role of tyrosine hydroxylase-dopamine pathway in Parkinson’s disease pathogenesis, Cellular Molecular Life Sciences 79 (2022) 599. https://doi.org/10.1007/s00018-022-04574-x

S. Dervin, P. Ganguly, R. S. Dahiya, Disposable Electrochemical Sensor Using Graphene Oxide-Chitosan Modified Carbon-Based Electrodes for the Detection of Tyrosine, IEEE Sensors Journal 21 (2021) 26226-26233. https://doi.org/10.1109/JSEN.2021.3073287

Z. Xu, X. Qiao, R. Tao, Y. Li, S. Zhao, Y. Cai, X. Luo, A wearable sensor based on multifunctional conductive hydrogel for simultaneous accurate pH and tyrosine monitoring in sweat, Biosensors and Bioelectronics 234 (2023) 115360. https://doi.org/10.1016/j.bios.2023.115360

E. Vaughan, C. Santillo, M. Setti, C. Larrigy, A.J. Quinn, G. Gentile, M. Lavorgna, D. Iacopino, Sustainable Laser-Induced Graphene Electrochemical Sensors from Natural Cork for Sensitive Tyrosine Detection, Advanced Sensor Research 2 (2023) 2300026. https://doi.org/10.1002/adsr.202300026

A. Afzal, F.A. Abuilaiwi, R. Javaid, F. Ali, A. Habib, Solid-state synthesis of heterogeneous Ni0.5Cu0.5-xZnxFe2O4 spinel oxides with controlled morphology and tunable dielectric properties, Journal of Materials Science: Materials in Electronics 31 (2020) 14261-14270. https://doi.org/10.1007/s10854-020-03982-8

J. Shen, S. Xu, C. Zhao, X. Qiao, H. Liu, Y. Zhao, J. Wei, Y. Zhu, Bimetallic Au@Pt Nanocrystal Sensitization Mesoporous α-Fe2O3 Hollow Nanocubes for Highly Sensitive and Rapid Detection of Fish Freshness at Low Temperature, ACS Applied Materials Interfaces 13 (2021) 57597-57608. https://doi.org/10.1021/acsami.1c17695

X. Ren, J. Chen, C. Wang, D. Wu, H. Ma, Q. Wei, H. Ju, Photoelectrochemical Sensor with a Z-Scheme Fe2O3/CdS Heterostructure for Sensitive Detection of Mercury Ions, Analytical Chemistry 95 (2023) 16943-16949. https://doi.org/10.1021/acs.analchem.3c03088

M. Liu, R.-Y. Sun, Y.-L. Ding, Q. Wang, P. Song, Au/α-Fe2O3/Ti3C2Tx MXene Nanosheet Heterojunctions for High-Performance NH3 Gas Detection at Room Temperature, ACS Applied Nano Materials 6 (2023) 11856-11867. https://doi.org/10.1021/acsanm.3c01744

E. Paulson, M. Jothibas, Significance of thermal interfacing in hematite (α-Fe2O3) nanoparticles synthesized by sol-gel method and its characteristics properties, Surfaces and Interfaces 26 (2021) 101432. https://doi.org/10.1016/j.surfin.2021.101432

S. Athar, I. Zaman, A. Liaqat, A. Afzal, Disposable Saliva Sensors for Early Cancer Diagnosis Using Hyper-Cross-Linked Molecularly Imprinted Polymeric Electrocatalysts, ACS Applied Polymer Materials 5 (2023) 10438-10445. https://doi.org/10.1021/acsapm.3c02295

R. Sen, P. Jain, R. Patidar, S. Srivastava, R. S. Rana, N. Gupta, Synthesis and Characterization of Nickel Ferrite (NiFe2O4) Nanoparticles Prepared by Sol- Gel Method, Materials Today: Proceedings 2 (2015) 3750-3757. https://doi.org/10.1016/j.matpr.2015.07.165

Z. N. Kayani, S. Arshad, S. Riaz, S. Naseem, Synthesis of Iron Oxide Nanoparticles by Sol-Gel Technique and Their Characterization, IEEE Transactions on Magnetics 50 (2014) 1-4. https://doi.org/10.1109/TMAG.2014.2313763

R. Malik, V.K. Tomer, S. Duhan, S. P. Nehra, P. S. Rana, One-Pot Hydrothermal Synthesis of Porous SnO2 Nanostructures for Photocatalytic Degradation of Organic Pollutants, Energy and Environment Focus 4 (2015) 340-345. https://doi.org/10.1166/eef.2015.1182

A. Bumajdad, S. Al-Ghareeb, M. Madkour, F. A. Sagheer, Non-noble, efficient catalyst of unsupported α-Cr2O3 nanoparticles for low temperature CO Oxidation, Scientific Reports 7 (2017) 14788. https://doi.org/10.1038/s41598-017-14779-x

N. Pailhé, J. Majimel, S. Pechev, P. Gravereau, M. Gaudon, A. Demourgues, Investigation of Nanocrystallized α-Fe2O3 Prepared by a Precipitation Process, The Journal of Physical Chemistry C 112 (2008) 19217-19223. https://doi.org/10.1021/jp8053313

M. Hjiri, Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol-gel technique, Journal of Materials Science: Materials in Electronics 31 (2020) 5025-5031. https://doi.org/10.1007/s10854-020-03069-4

N. A. Meyer, M. D. Wenz, J. P. S. Walsh, S. D. Jacobsen, A.J . Locock, J. W. Harris, Goldschmidtite, (K,REE,Sr)(Nb,Cr)O3: A new perovskite supergroup mineral found in diamond from Koffiefontein, South Africa, American Mineralogist 104 (2019) 1345-1350. https://doi.org/10.2138/am-2019-6937

X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, J. Yang, Mutual Effects of Fluorine Dopant and Oxygen Vacancies on Structural and Luminescence Characteristics of F Doped SnO2 Nanoparticles, Materials 10 (2017) 1398. https://doi.org/10.3390/ma10121398

Y. Li, Z. Wang, R. Liu, Superparamagnetic α-Fe2O3/Fe3O4 Heterogeneous Nanoparticles with Enhanced Biocompatibility, Nanomaterials 11 (2021) 834. https://doi.org/10.3390/nano11040834

L. Chen, Y. Wu, N. T. H. Nhung, C. He, H. Chen, G. Dodbiba, A. Otsuki, T. Fujita, High Gradient Magnetic Separation of Pure Gd2O3 Particles from Pure La2O3 Particles, Metals 13 (2023) 241. https://doi.org/10.3390/met13020241

S. Chen, D. Liu, N. Song, C. Wang, X. Lu, Promoting non-enzymatic electrochemical sensing performance toward glucose by the integration of conducting polypyrrole with metal-organic framework, Composites Communications 30 (2022) 101074. https://doi.org/10.1016/j.coco.2022.101074

P. Deng, J. Xiao, J. Feng, Y. Tian, Y. Wu, J. Li, Q. He, Highly sensitive electrochemical sensor for tyrosine detection using a sub-millimeter electrode, Microchemical Journal 165 (2021) 106106. https://doi.org/10.1016/j.microc.2021.106106

R. D. Crapnell, C. E. Banks, Perspective: What constitutes a quality paper in electroanalysis?, Talanta Open 4 (2021) 100065. https://doi.org/10.1016/j.talo.2021.100065

E. P. Randviir, A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry, Electrochimica Acta 286 (2018) 179-186. https://doi.org/10.1016/j.electacta.2018.08.021

N. Baig, A.-N. Kawde, A novel, fast and cost effective graphene-modified graphite pencil electrode for trace quantification of L-tyrosine, Analytical Methods 7 (2015) 9535-9541. https://doi.org/10.1039/C5AY01753J

T. Maiyalagan, J. Sundaramurthy, P. S. Kumar, P. Kannan, M. Opallo, S. Ramakrishna, Nanostructured α-Fe2O3 platform for the electrochemical sensing of folic acid, Analyst 138 (2013) 1779-1786. https://doi.org/10.1039/C3AN00070B

E. F. Douglass Jr., P. F. Driscoll, D. Liu, N. A. Burnham, C. R. Lambert, W. G. McGimpsey, Effect of Electrode Roughness On the Capacitive Behavior of Self-Assembled Monolayers, Analytical Chemistry 80 (2008) 7670-7677. https://doi.org/10.1021/ac800521z

H. Essousi, H. Barhoumi, S. Karastogianni, S. T. Girousi, An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted Over-oxidized Polypyrrole for Amoxicillin Determination, Electroanalysis 32 (2020) 1546-1558. https://doi.org/10.1002/elan.201900751

I. Soni, G. Kudur Jayaprakash, A short review on the analysis of the adsorptive behavior of surfactants at carbon paste electrodes for electrochemical sensing, Journal of Molecular Liquids 388 (2023) 122737. https://doi.org/10.1016/j.molliq.2023.122737

Y. Luo, J. Liu, X. Zhang, Z. Li, Graphene and Chitosan Composite Film Modified Electrode as a Sensitive Voltammetric Sensor for Tyrosine Detection in Food and Biological Samples, Journal of The Electrochemical Society 169 (2022) 016502. https://doi.org/10.1149/1945-7111/ac425b

L. Fiore, B. De Lellis, V. Mazzaracchio, E. Suprun, R. Massoud, B. M. Goffredo, D. Moscone, F. Arduini, Smartphone-assisted electrochemical sensor for reliable detection of tyrosine in serum, Talanta 237 (2022) 122869. https://doi.org/10.1016/j.talanta.2021.122869

J. Chen, Y. Chen, S. Li, J. Yang, J. Dong, X. Lu, MXene/CNTs/Cu-MOF electrochemical probe for detecting tyrosine, Carbon 199 (2022) 110-118. https://doi.org/10.1016/j.carbon.2022.07.021

X.-Q. Wu, P.-Q. Feng, Z. Guo, X. Wei, Water-Stable 1D Double-Chain Cu Metal-Organic Framework-based Electrochemical Biosensor for Detecting l-Tyrosine, Langmuir 36 (2020) 14123-14129. https://doi.org/10.1021/acs.langmuir.0c02799

M. Liu, J. Lao, H. Wang, Z. Xu, J. Li, L. Wen, Z. Yin, C. Luo, H. Peng, Electrochemical Determination of Tyrosine Using Graphene and Gold Nanoparticle Composite Modified Glassy Carbon Electrode, Russian Journal of Electrochemistry 57 (2021) 41-50. https://doi.org/10.1134/S1023193520110063

C. Varodi, F. Pogăcean, M. Coroş, A. Ciorîță, S. Pruneanu, Electrochemical L-Tyrosine Sensor Based on a Glassy Carbon Electrode Modified with Exfoliated Graphene, Sensors 22 (2022) 3606. https://doi.org/10.3390/s22103606

K. Murtada, R. Salghi, A. Ríos, M. Zougagh, A sensitive electrochemical sensor based on aluminium doped copper selenide nanoparticles-modified screen printed carbon electrode for determination of L-tyrosine in pharmaceutical samples, Journal of Electroanalytical Chemistry 874 (2020) 114466. https://doi.org/10.1016/j.jelechem.2020.114466

Z.-Y. Li, D.-Y. Gao, Z.-Y. Wu, S. Zhao, Simultaneous electrochemical detection of levodapa, paracetamol and l -tyrosine based on multi-walled carbon nanotubes, RSC Advances 10 (2020) 14218-14224. https://doi.org/10.1039/D0RA00290A

S. Sam, M.R. Mathew, K.G. Kumar, A Simple Electropolymer Based Voltammetric Sensor for the Simultaneous Determination of Melanoma Biomarkers-L-Dopa and L-Tyrosine, Journal of The Electrochemical Society 169 (2022) 027511. https://doi.org/10.1149/1945-7111/ac51a1

A. Dinu, C. Apetrei, Development of Polypyrrole Modified Screen-Printed Carbon Electrode Based Sensors for Determination of L-Tyrosine in Pharmaceutical Products, International Journal of Molecular Sciences 22 (2021) 7528. https://doi.org/10.3390/ijms22147528

Published

07-11-2024 — Updated on 07-11-2024

How to Cite

Maryam, K., Javed, M. U., Rafique, C., Habib, A., & Afzal, A. (2024). Electrochemical behavior and L-tyrosine sensing properties of nanostructured Cr, Sn and La-doped α-Fe2O3 interfaces: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(6), 787–801. https://doi.org/10.5599/jese.2409

Issue

Section

Electroanalytical chemistry