Electrochemical reduction of artemisinin: Chromatographic identification of bulk electrolysis products

  • Faraja Ombwayo Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028
  • Zahilis Mazzhichette Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028
  • Amos Mugweru Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028
Keywords: Cyclic voltammetry, dyhidroartemisinin, electrochemical reduction, bulk electrolysis, LC-MS


Artemisinin is a naturally occurring sesquiterpene lactone with an endo-peroxide bond. This drug is used for treatment of many diseases including malaria. The reduction of this molecule on an electrode surface was carried out by cyclic voltammetry as well as amperometry. Cyclic voltammetry of artemisinin generated one prominent peak wave at -1.0 V and another, smaller one at -0.3 V vs Ag/AgCl reference electrode. The bulk electrolysis of artemisinin on a carbon electrode generated two other irreversible peak waves at around -0.7 and -0.1 V. The concentration of the products was dependent on the time of electrolysis. LC-MS was used to determine the bulk electrolysis products of artemisinin. Initially dihydroartemisinin was generated as the main reduction product. Other reduction products were formed after further reduction of dyhidroartemisinin.


Download data is not yet available.


E. Van Geldre, A. Vergauwe, E. Van Den Eeckhout, Plant Molecular Biology 33 (1997) 199-209.

V. Dhingra, C. Rajoli, M.L. Narasu, Bioresource Technology 73 (2000) 279-282.

D. L. Klayman, Science 228 (1985) 1049-1055.

S. R. Meshnick, International Journal for Parasitology 32 (2002) 1655-1660.

S. Singh, A. Giri, S. Giri, Mutation Research/Genetic Toxicology and Environmental Mutagenesis 777 (2015) 1-6.

T. J. C. Anderson, Molecular Biology and Evolution 34 (2017) 131-144.

C. Prosser, PloS One 13 (2018).

L. Dembele, Scientific reports 7 (2017).

A. Hamacher-Brady, H. A. Stein, S. Turschner, I. Toegel, R. Mora, N. Jennewein, T. Efferth, R. Eils, N. R. Brady, Journal of Biological Chemistry 286 (2011) 6587-6601.

N.-D. Yang, S.-H. Tan, S. Ng, Y. Shi, J. Zhou, K. S. W. Tan, W-S. F. Wong, H-M. Shen, Journal of Biological Chemistry 289 (2014) 33425-33441.

J. Suberu, L. Song, S. Slade, N. Sullivan, G. Barker, A. A. Lapkin, Journal of Pharmaceutical and Biomedical Analysis 84 (2013) 269-277.

A. F. T. F. Waffo, Sensors and actuators B: Chemical 275 (2018) 163-173.

J. Zhou, X. Sun, K. Wang, International Journal of Electrochemical Science 11 (2016) 3114-3122.

C. Debnath, Journal of the Korean Chemical Society 55 (2011) 57-62.

J. Ginja Teixeira, Electrochimica Acta 108 (2013) 51-65.

F. Zhang, D.K. Gosser Jr, S. R. Meshnick, Biochemical Pharmacology 43 (1992) 1805-1809.

X. Yang, Tian Gan, X. Zheng, D. Zhu, A. K. Wu, Bulletin of Korean Chemical Society 29 (2008) 1368-1390.

J. Jastrebova, K. E. Markides, L. Nyholm, Y. Bergqvist, Analyst 123 (1998) 313-317.

F-C. Gong, Z-D. Xiao, Z. Cao, D-X. Wu, Talanta 72 (2007) 1453-1457.

R. Jain, Vikas, Colloids and Surfaces B: Biointerfaces 88 (2011) 729-733.

P-H. Yang, Z-J. Zhou, J-Y. Cai, Colloids and Surfaces A: Physicochemical and Engineering Aspects 257–258 (2005) 467-472.

J. R. M. Reys, P. R. Lima, A. G. Cioletti, A. S. Ribeiro, F. C. De Abreu, M. O. F. Goulart, L. T. Kubota, Talanta 77 (2008) 909-914.

C. Debnath, P. Saha, A. Ortner, Electroanalysis 20 (2008) 1549-1555.

S. Hosseini, ChemElectroChem (2018) Ahead-of Print.

M. Wilken, S. Ortgies, A. Breder, I. Siewert, ACS Catalysis 8 (2018) 10901-10912.

F. Zheng, Electrochimica Acta 296 (2019) 1095-1101.

E. T. Martin, C. M. Mcguire, M. S. Mubarak, D. G. Peters, Chemical Reviews 116 (2016) 15198-15234.

T. Ericsson, Xenobiotica 44 (2014) 615-626.

A. M. Mugweru, A. Shore, H. K. Kahi, G. N. Kamau, International Journal of Chemical Kinetics 48 (2016) 72-78.

Z. Mazzochette, Analytical +Methods 9 (2017) 2997-3002.

A. Djimdé, G. Lefèvre, Malaria Journal 8 (2009) S4.

Electrochemical Science