Microfluidic paper based membraneless biofuel cell to harvest energy from various beverages

  • Prakash Rewatkar MEMS and Microfluidics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078 http://orcid.org/0000-0002-9739-4178
  • Sanket Goel MEMS and Microfluidics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078
Keywords: Paper based enzymatic biofuel cell (P-EBFC), beverages, Carbon nanotube (CNT), Buckypaper (BP), Cyclic Voltammetry (CV)

Abstract

The present work establishes the cost-effective and miniature microfluidic self-pumping paper based enzymatic biofuel cell (P-EBFC). The developed Y-shaped P-EBFC consists of buckeye composite multiwall carbon nanotube (MWCNT) buckypaper (BP) based bio-anode and bio-cathode that were immobilized with electro-biocatalytic enzymes glucose oxidase (GOx) and laccase, respectively. The electrocatalytic activity of enzymes on electrode surface is confirmed using cyclic voltammetry (CV) technique. Such immobilized bio-anode and bio-cathode show exquisite electrocatalytic activity towards glucose and O2, respectively. Most appealingly, P-EBFC can directly harvest energy from widely available beverages containing glucose such as Mountain Dew, Pepsi, 7up and fresh watermelon juice. This could provide potential application of P-EBFC as a portable power device.

Downloads

Download data is not yet available.

References

D. Kashyap, P. S. Venkateswaran, P. K. Dwivedi, Y. H. Kim, G. M. Kim, A. Sharma, S. Goel, International Journal of Nanoparticles 8 (2015) 61-81.

M. Rasmussen, S. Abdallaoui, S. Minteer, Biosensors and Bioelectronics 76 (2016) 91–102.

Q. Xu, F. Zhang, L. Xu, P. Leung, C. Yang, H. Li, Renewable and Sustainable Energy Reviews 8 (2017) 574-580.

W. Narvaez Villarrubia, F. Soavi, C. Santoro, C. Arbizzani, A. Serov, S. Rojas-Carbonell, G. Gupta, P. Atanassov, Biosensors and Bioelectronics 86 (2016) 459–465.

C. Hou, A. Liu, Electrochimica Acta 245 (2017) 303–308.

N. Yuhashi, M. Tomiyama, J. Okuda, S. Igarashi, K. Ikebukuro, K. Sode, Biosensors and Bioelectronics 20 (2005) 2145–2150.

I. W. Schubart, G. Göbel, F. Lisdat, Electrochimica Acta 82 (2012): 224-232.

M. González-Guerrero, F. Campo, J. Esquivel, F. Giroud, S. Minteer, N. Sabaté J. Power Sources 326 (2016) 410–416.

I. Shitanda, S. Nohara, Y. Hoshi, M. Itagaki, S. Tsujimura, Journal of Power Sources, 360 (2017) 516–519.

G. Ciniciato, C. Lau, A. Cochrane, S. S. Sibbett, E. R. Gonzalez, P. Atanassov, Electrochimica Acta 82 (2012) 208–213.

H. Sun, K. Xu, G. Lu, H. Lv, Z. Liu, IEEE Transactions on Nanotechnology 13 (2014) 789–794.

A. C. O. Santana E. F. Southgate, J. P. B . G. Mendes, J. Dweck, E. Mosse Alhadeff, N. I. Bojorge Ramirez, Journal of Electrochemical Science and Engineering 4 (2014) 165–175.

G. Göbel, M. L. Beltran, J. Mundhenk, T. Heinlein, J. Schneider, F. Lisdat, Electrochimica Acta 218 (2016) 278–284.

Y. Yu, Y. Han, B. Lou, L. Zhang, L. Han, S. Dong, Chemical Communications 52 (2016) 13499–13502.

D. Wen, X. Xu, S. Dong, Energy & Environmental Science 4 (2011) 1358-1363.

L. Zhang, M. Zhou, D. Wen, L. Bai, B. Lou, S. Dong, Biosensors and Bioelectronics 35 (2012) 155–159.

J. Park, Z. Ren, IEEE Transactions on Energy Conversion 27 (2012) 715-724.

P. Rewatkar, M. Bandapati, S. Goel, IEEE Sensor Journal 18(13) (2018) 5395-5401.

A. Gross, M. Holzinger, S. Cosnier, Energy and Environmental Science 11 (2018) 1670– 1687

P. Rewatkar, S. Goel, IEEE Transactions on Nanobioscience 17 (2018) 374-379.

X. Li, L. Zhang, L. Su, T. Ohsaka, L. Mao, Fuel Cells 9 (2009) 85–91.

Published
08-12-2019
Section
Bioelectrochemistry & Fuel Cells