Graphite electrodes as bioanodes for enzymatic glucose biofuel cell

  • Madhavi Bandapati Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, , India
  • Sanket Goel MEMS and Microfluidics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
  • Balaj Krishnamurthy Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, , India
Keywords: Pencil graphite electrode, bioanode, glucose oxidase, multiwalled carbon nanotubes, enzymatic glucose biofuel cell
Fabricated COOH-MWCNT/PG

Abstract

This study investigates the performance of pencil graphite (PG) electrodes to identify the grade of pencil most suitable as bioanode for enzymatic glucose biofuel cell. Pencils of H, 3H, 5H and B grades are selected for this study. The surfaces of different grade PGs are modified with carboxylic acid functionalized multi walled carbon nanotubes (COOH-MW­CNT/PG), followed by immobilization with glucose oxidase (GOx) to fabricate the respect­tive bioanodes (GOx/COOH-MWCNT/PG). Morphological and electrochemical characteri­zations are carried out using scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry and energy dispersive X-ray spectroscopy. All tested PG electrodes exhibited positive results with variable response characteristics towards glucose oxidation reaction. B-grade PG bioanode is found to have the highest coverage of the deposited nanobiocomposite with the fastest electron transfer rate. The half-cell electrode assembly with this grade of PG recorded the highest current density of 4.25 mA cm-2 at physiological glucose conditions (5 mM glucose, pH 7.0). Enzymatic glucose biofuel cell assembled with B-grade PG bioanode and platinum cathode generated an open circuit potential of 149 mV and maximum power density of 0.789 µW cm−2 from 5 mM glucose at ambient conditions (25 ± 3C). The results obtained for B-grade PG bioanode are comparable to those of conventional carbon and glassy carbon electrodes, thus demonstrating its applicability to enzymatic glucose biofuel cells.

Downloads

Download data is not yet available.

References

D. Kashyap, P. S. Venkateswaran, P. K. Dwivedi, YH. Kim, GM. Kim, A. Sharma, S. Goel, International Journal of Nanoparticles 8 (2015) 61-81.

J. Kim, H. Jia, P. Wang, Biotechnology Advances 24 (2006) 296-308.

M. Holzinger, A. Le Goff, S. Cosnier, Electrochimica Acta 82 (2012) 179-190

J. M. Friedrich, C. Ponce-de-León, G. W. Reade, F. C. Walsh, Journal of Electroanalytical Chemistry 561 (2004) 203-217.

A. K. Sarma, P. Vatsyayan. P. Goswami, S. D. Minteer, Biosensors and Bioelectronics 24 (2006) 2313-2322.

K. Aoki, T. Okamoto, H. Kaneko, K. Nozaki, A. Negishi, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 263 (1989) 323-331.

I. G. David, D. E. Popa, M. Buleandra, Journal of Analytical Methods in Chemistry (2017) Article ID 1905968 https://doi.org/10.1155/2017/1905968

J. K. Kariuki, Journal of the Electrochemical Society 159 (2012) 747-751.

P. H. C. P. Tavare, P. J. S. Barbeira, Journal of Applied Electrochemistry 38 (2008) 827-832.

E. Alipour, M. R. Majidi, A. Saadatirad, S. M. Golabi, A. M. Alizadeh, Electrochimica Acta 91 (2103) 36-42.

Z. Q. Gong, A. N. Sujari, S. Ab Ghani, Electrochimica Acta 65 (2012) 257-265.

L. Liv, N. Nakiboglu, Turkish Journal of Chemistry 40 (2016) 412-421.

J. Wang, A. N. Kawde, E. Sahlin, Analyst 125 (2000) 5-7.

J. Wang, A. N. Kawde, Analytica Chimica Acta 413 (2001) 219-224.

E. Alipour, S. Gasemlou, Analytical Methods 4 (2012) 2962-2969.

A. Ozcan, Y. Sahin, Biosensors and Bioelectronics 25 (2010) 2497-2502.

P. Kara, B. Meric, A. Zeytinoglu, M. Ozsoz, Analytica Chimica Acta 518 (2004) 69-76.

A. M. Bond, P. J. Mahon, J. Schiewe, V. Vicente-Beckett, Analytica Chimica Acta 345(1997) 67-74.

M. D. Rubianes, G. A. Rivas, Analytical Letters 36 (2003) 329-345.

S. Buratti, M. Scampicchio, G. Giovanelli, S. Mannino, Talanta 75 (2008) 312-316.

A. N. Kawde, N. Baig, M. Sajid, RSC Advances 6 (2016) 91325-40.

M. R. Akanda, M. Sohail, M. A. Aziz, A. N. Kawde, Electroanalysis 28 (2016) 408-424.

R. Ansari, A. F. Delavar, A. Aliakbar, A. Mohammad-Khah, Journal of Solid State Electrochemistry 16 (2012) 869-875.

J. L. Ling, A. Khan, B. Saad, S. Ab Ghani, Talanta 88 (2012) 477-483.

M. K. Ali, R. Ansari, A. F. Delavar, Z. Mosayebzadeh, Bulletin of the Korean Chemical Society 33 (2012) 1247-1252.

A. N. Kawde, M. Aziz, N. Baig, Y. Temerk, Journal of Electroanalytical Chemistry 740 (2015) 68-74.

M. A. Aziz, A. N. Kawde, Talanta 115 (2013) 214-221.

H.C. Kalachar, Y.A. Naik, International Journal of Chem Tech Research 3(2011)1237-1245.

C. Cheng, K.C. Chang, C.S. Chena, D.G. Pijanowska, Journal of Chinese Chemical Society 58 (2011) 739-748.

G. Congur, M. Plucnara, A. Erdem, M. Fojta, Electroanalysis 27 (2015) 1579-1586.

A.A. Ensafi, E. Khoddami, B. Rezaei, Talanta 116 (2013) 1113-1120.

J. Narang, N. Malhotra, G. Singh, C.S. Pundir, Biosensors and Bioelectronics 66 (2015) 332-337.

M. R. Majidi, K. Asadpour-Zeynali, B. Hafezi, Microchimica Acta 169 (2010) 283-288.

F. Kuralay, T. Vural, C. Bayram, E.B. Denkbas, S. Abaci, Colloids and Surfaces B: Biointerfaces 87 (2011) 18-22.

A. Erdem, M. Muti, H. Karadeniz, G. Congur, E. Canavar, Colloids and Surfaces B: Biointerfaces 95 (2012) 222-228.

E. Alipour, M.R. Majidi, O. Hoseindokht, Journal of Chinese Chemical Society 62 (2015) 461-468.

M. Bandapati, P.K. Dwivedi, B. Krishnamurthy, Y. H. Kim, G. M. Kim, S. Goel, International Journal of Hydrogen Energy 42 (2017) 27220-27229.

M. Bandapati, B. Krishnamurthy, S. Goel, IEEE Transactions on Nanobioscience 18 (2) (2019) 170-175.

K. Ahmad, M. Naushad, International Journal of Hydrogen Energy 39 (2014) 7417-7421.

D. Ivnitski, B. Branch, P. Atanassov, C. Apblett, Electrochemical Communication 8 (2016) 1204-1210.

J. Shi, J. C. Claussen, E.S. McLamore, A. ul Haque, D. Jaroch, A.R. Diggs, P. Calvo-Marzal, J. L. Rickus, D.M. Porterfield, Nanotechnology 22(35) (2011) 355502.

D. Kashyap, P.K. Dwivedi, J.K. Pandey, Y.H. Kim, G.M. Kim, A. Sharma, S. Goel, International Journal of Hydrogen Energy 39 (2014) 20159-170.

T. Ikeda, I. Katasho, M. Kamei, M. Senda, Agricultural and Biological Chemistry 48 (1984) 1969-1976.

A. J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, 2000.

E. Laviron, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 10 (1979) 19-28.

A. P. Brown, F. C. Anson, Analytical Chemistry 11 (1977)1589-1595.

F. Lopez, S. Zerria, A. Ruff, W. Schuhmann, Electroanalysis 7 (1977) 1311-1318.

K. Gong, M. Zhang, Y. Yan, L. Su, L. Mao, S. Xiong, Y. Chen, Analytical Chemistry 76 (2005) 6500-5.

B. C. Kim, I. Lee, S. J. Kwon, Y. Wee, K.Y. Kwon, C. Jeon, H. J. An, H. T. Jung, S. Ha, J. S. Dordick, J. Kim, Scientific Reports 7 (2017) 40202.

M. Ammam, J. Fransaer, Biotechnology and Bioengineering 109 (2012) 1601-1609.

S. Palanisamy, S. Cheemalapati, S. M. Chen, International Journal of Electrochemical Science 11 (2012) 11477-87.

Y. Li, S. M. Chen, R. Saraswathi, International Journal of Electrochemical Science 6 (2011) 3776-3788.

R. Haddad, W. Xia, D. A. Guschin, S. Pöller, M. Shao, J. Vivekananthan, M. Muhler, W. Schuhmann, Electroanalysis 25 (2013) 59-67.

A. Kumar, S. Sharma, L. M. Pandey, P. Chandra, Materials Science for Energy Technologies 1 (2018) 38-48.

Published
16-06-2020
Section
Bioelectrochemistry & Fuel Cells