Ultrasound-enhanced water electrolysis for hydrogen production: Mechanisms, metrology and energy metrics

Review paper

Authors

  • ChenHongWen Zeng School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia https://orcid.org/0009-0009-6349-7687
  • Yew Heng Teoh School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia https://orcid.org/0000-0003-1524-5214
  • Heoy Geok How Department of Engineering, School of Engineering, Computing and Built Environment, UOW Malaysia KDU Penang University College, 32, Jalan Anson, 10400 Georgetown, Penang, Malaysia https://orcid.org/0000-0003-2069-7952
  • Mohamad Yusof Idroas School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia https://orcid.org/0000-0003-3505-7659
  • Thanh Danh Le College of Technology and Design, University of Economics Ho Chi Minh City (UEH), 59C Nguyen Dinh Chieu Street, Xuan Hoa Ward, Ho Chi Minh City 700000, VietNam https://orcid.org/0000-0002-0855-2091

DOI:

https://doi.org/10.5599/jese.3045

Keywords:

Sono-electrolysis, acoustic cavitation, hybrid sono-hydrogen systems

Abstract

Ultrasound intensifies hydrogen production in water electrolysis cells by thinning boun­dary layers, accelerating bubble detachment, and, in tuned windows, modulating cavi­tation chemistry, yet cross-study claims remain difficult to compare. Focusing on ultra­sound-enhanced water electrolysis (sono-electrolysis), this review aligns reporting with IEC 61161 (radiation-force acoustic power) and IEC 62127-2:2025 (hydrophone calibra­tion); requires delivered acoustic intensity at the electrode, Idel / W·cm⁻², with stated trace­ability; pairs isothermal control with uncertainty budgets; and benchmarks perfor­mance using Δ-metrics: Δj (current-density gain at fixed cell voltage), Δη (cell voltage/over­po­tential reduction at fixed current density) and ΔH₂ (hydrogen production rate gain at matched electrical input), together with specific energy consumption (SEC, kWh·kg⁻¹ H₂). A window-based synthesis indicates that, under isothermal operation, 20 to 40 kHz with delivered intensity ≈0.2 to 1.0 W·cm⁻² reproducibly yields Δj ≈ 15 to 30 %, Δη ≈ 40 to 120 mV, ΔH₂ ≈ 10 to 30 %, and net SEC improvements of ~8 to 12 % when auxiliary loads are included, whereas at higher dose (Idel ≈ 1.0 to 1.6 W·cm⁻²) non-uniform fields, cloud shielding, and heating can saturate or reverse benefits. To prevent metric conflation, hybrid sono-hydrogen routes are reviewed separately. The review concludes by proposing a minimum reporting set-frequency, waveform/duty and pulse repetition frequency, Idel (traceability/uncertainty), geometry/stand-off, electrolyte and dissolved gas, bulk tempe­rature and runtime, gas metrology with temperature/pressure cor­rections, SEC boun­daries and replicates/statistics, and by outlining priorities for operando cavitation-electro­chemistry co-registration, geometry/void-fraction-aware scale-up, and durability under combined fields, to support reproducible, energy-accounted, and comparable studies across laboratories.

 

Downloads

Download data is not yet available.

References

[1] International Energy Agency, Global Hydrogen Review 2024. https://www.iea.org/reports/global-hydrogen-review-2024 (accessed September 24, 2025).

[2] R. F. Martínez, G. Cravotto, P. Cintas, Organic sonochemistry: A chemist’s timely perspective on mechanisms and reactivity, Journal of Organic Chemistry 86 (2021) 13833-13856. https://doi.org/10.1021/acs.joc.1c00805 DOI: https://doi.org/10.1021/acs.joc.1c00805

[3] S. Kwon, S. Bae, G. Son, Experimental study of ultrasound-assisted alkaline water electrolysis for hydrogen production, Journal of Mechanical Science and Technology 39 (2025) 663-669. https://doi.org/10.1007/s12206-025-0113-9 DOI: https://doi.org/10.1007/s12206-025-0113-9

[4] Y. H. Teoh, S. Y. Liew, H. G. How, H. Yaqoob, M. Y. Idroas, M. A. Jamil, S. U. Mahmud, T. D. Le, H. M. Ali, M. W. Shahzad, Investigating sono-electrolysis for hydrogen generation and energy optimization, International Communications in Heat and Mass Transfer 164 (2025) 108980. https://doi.org/10.1016/j.icheatmasstransfer.2025.108980 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2025.108980

[5] IEC 62127-2:2025, International Electrotechnical Commission. https://webstore.iec.ch/en/publication/68572 (accessed September 24, 2025)

[6] IEC 61161:2013, International Electrotechnical Commission. https://webstore.iec.ch/en/publication/4708 (accessed August 26, 2025)

[7] IEC TS 62462:2017, Intertek Inform. https://www.intertekinform.com/en-au/standards/iec-ts-62462-2017-561987_saig_iec_iec_2995392 (accessed September 9, 2025)

[8] S. Joshi, C. Agarkoti, P. R. Gogate, Mapping of 20 L capacity ultrasonic reactor using cavitation activity meter and dye degradation, Ultrasonics Sonochemistry 101 (2023) 106688. https://doi.org/10.1016/j.ultsonch.2023.106688 DOI: https://doi.org/10.1016/j.ultsonch.2023.106688

[9] D. Meroni, R. Djellabi, M. Ashokkumar, C. L. Bianchi, D. C. Boffito, Sonoprocessing: From concepts to large-scale reactors, Chemical Reviews 122 (2022) 3219-3258. https://doi.org/10.1021/acs.chemrev.1c00438 DOI: https://doi.org/10.1021/acs.chemrev.1c00438

[10] P. Adamou, E. Harkou, A. Villa, A. Constantinou, N. Dimitratos, Ultrasonic reactor set-ups and applications, Ultrasonics Sonochemistry 107 (2024) 106925. https://doi.org/10.1016/j.ultsonch.2024.106925 DOI: https://doi.org/10.1016/j.ultsonch.2024.106925

[11] N. H. Merabet, K. Kerboua, Green hydrogen from sono-electrolysis: A coupled numerical and experimental study of the ultrasound assisted membraneless electrolysis of water supplied by PV, Fuel 356 (2024) 129625. https://doi.org/10.1016/j.fuel.2023.129625 DOI: https://doi.org/10.1016/j.fuel.2023.129625

[12] J. Gravelle, J. Y. Hihn, B. G. Pollet, Power ultrasound as performance enhancer for alkaline water electrolysis: A review, International Journal of Hydrogen Energy 100 (2025) 428-441. https://doi.org/10.1016/j.ijhydene.2024.12.243 DOI: https://doi.org/10.1016/j.ijhydene.2024.12.243

[13] Ultrasound power and radiation force balances, National Physical Laboratory (NPL). https://www.npl.co.uk/products-services/ultrasound/radiation-force-balance (accessed September 6, 2025)

[14] I. Fernández-Osete, D. Bermejo, X. Ayneto-Gubert, X. Escaler, Review of the uses of acoustic emissions in monitoring cavitation erosion and crack propagation, Foundations 4 (2024) 114-133. https://doi.org/10.3390/foundations4010009 DOI: https://doi.org/10.3390/foundations4010009

[15] C. E. Brennen, Cavitation and Bubble Dynamics, Cambridge University Press, Cambridge, United Kingdom, 2013. https://doi.org/10.1017/CBO9781107338760 DOI: https://doi.org/10.1017/CBO9781107338760

[16] T. G. Leighton, R. E. Apfel, The Acoustic Bubble, Journal of the Acoustical Society of America 96 (1994) 2616. https://doi.org/10.1121/1.410082 DOI: https://doi.org/10.1121/1.410082

[17] F. Foroughi, C. Immanuel Bernäcker, L. Röntzsch, B. G. Pollet, Understanding the effects of ultrasound (408 kHz) on the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on Raney-Ni in alkaline media, Ultrasonics Sonochemistry 84 (2022) 105979. https://doi.org/10.1016/j.ultsonch.2022.105979 DOI: https://doi.org/10.1016/j.ultsonch.2022.105979

[18] Y. Zhu, X. Zhu, I. Soyler, X. Pan, L. X. Liu, M. J. Bussemaker, Prediction of sonochemical activity based on dimensionless analysis and multivariate linear regression, Ultrasonics Sonochemistry 120 (2025) 107427. https://doi.org/10.1016/j.ultsonch.2025.107427 DOI: https://doi.org/10.1016/j.ultsonch.2025.107427

[19] K. Fattahi, G. Dodier, E. Robert, D. C. Boffito, Flow effects on sonochemical oxidation activity in a 20 kHz ultrasonic horn system, Chemical Engineering Journal 489 (2024) 151203. https://doi.org/10.1016/j.cej.2024.151203 DOI: https://doi.org/10.1016/j.cej.2024.151203

[20] C. Hwang, I. Na, Y. Son, Sonochemical oxidation activity in 20-kHz probe systems: The effects of vessel shape, vessel wall thickness, and probe position, Ultrasonics Sonochemistry 121 (2025) 107519. https://doi.org/10.1016/j.ultsonch.2025.107519 DOI: https://doi.org/10.1016/j.ultsonch.2025.107519

[21] G. Viciconte, V. P. Sarvothaman, P. Guida, T. T. Truscott, W. L. Roberts, High-speed imaging and coumarin dosimetry of horn type ultrasonic reactors: Influence of probe diameter and amplitude, Ultrasonics Sonochemistry 119 (2025) 107362. https://doi.org/10.1016/j.ultsonch.2025.107362 DOI: https://doi.org/10.1016/j.ultsonch.2025.107362

[22] Lord Rayleigh, VIII. On the pressure developed in a liquid during the collapse of a spherical cavity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 34 (1917) 94-98. https://doi.org/10.1080/14786440808635681 DOI: https://doi.org/10.1080/14786440808635681

[23] J. B. Keller, M. Miksis, Bubble oscillations of large amplitude, Journal of the Acoustical Society of America 68 (1980) 628-633. https://doi.org/10.1121/1.384720 DOI: https://doi.org/10.1121/1.384720

[24] T. J. Tiong, J. K. Chu, K. W. Tan, Advancements in acoustic cavitation modelling: Progress, challenges, and future directions in sonochemical reactor design, Ultrasonics Sonochemistry 112 (2024) 107163. https://doi.org/10.1016/j.ultsonch.2024.107163 DOI: https://doi.org/10.1016/j.ultsonch.2024.107163

[25] K. Yasui, Origin of the broad-band noise in acoustic cavitation, Ultrasonics Sonochemistry 93 (2022) 106276. https://doi.org/10.1016/j.ultsonch.2022.106276 DOI: https://doi.org/10.1016/j.ultsonch.2022.106276

[26] E. A. Neppiras, Acoustic cavitation series: Part one: Acoustic cavitation: An introduction, Ultrasonics 22 (1984) 25-28. https://doi.org/10.1016/0041-624X(84)90057-X DOI: https://doi.org/10.1016/0041-624X(84)90057-X

[27] A. G. Athanassiadis, Z. Ma, N. Moreno-Gomez, K. Melde, E. Choi, R. Goyal, P. Fischer, Ultrasound-responsive systems as components for smart materials, Chemical Reviews 122 (2021) 5165-5208. https://doi.org/10.1021/acs.chemrev.1c00622 DOI: https://doi.org/10.1021/acs.chemrev.1c00622

[28] P. Peñas, Á. M. Soto, D. Lohse, G. Lajoinie, D. Van Der Meer, Ultrasound-enhanced mass transfer during the growth and dissolution of surface gas bubbles, International Journal of Heat and Mass Transfer 174 (2021) 121069. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121069 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121069

[29] B. Jia, H. Soyama, Non-spherical cavitation bubbles: A review, Fluids 9 (2024) 249. https://doi.org/10.3390/fluids9110249 DOI: https://doi.org/10.3390/fluids9110249

[30] A. B. Sieber, D. B. Preso, M. Farhat, Cavitation bubble dynamics and microjet atomization near tissue-mimicking materials, Physics of Fluids 35 (2023) 013306. https://doi.org/10.1063/5.0136577 DOI: https://doi.org/10.1063/5.0136577

[31] X. Lu, C. Chen, K. Dong, Z. Li, J. Chen, An equivalent method of jet impact loading from collapsing near-wall acoustic bubbles: A preliminary study, Ultrasonics Sonochemistry 79 (2021) 105760. https://doi.org/10.1016/j.ultsonch.2021.105760 DOI: https://doi.org/10.1016/j.ultsonch.2021.105760

[32] A. Kiyama, T. Shimazaki, J. M. Gordillo, Y. Tagawa, Direction of the microjet produced by the collapse of a cavitation bubble located in a corner of a wall and a free surface, Physical Review Fluids 6 (2021) 083601. https://doi.org/10.1103/PhysRevFluids.6.083601 DOI: https://doi.org/10.1103/PhysRevFluids.6.083601

[33] H. Su, J. Sun, C. Wang, H. Wang, Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation, Ultrasonics Sonochemistry 102 (2024) 106734. https://doi.org/10.1016/j.ultsonch.2023.106734 DOI: https://doi.org/10.1016/j.ultsonch.2023.106734

[34] A. Sahoo, H. He, D. Darrow, C. C. Chen, E. S. Ebbini, Image-guided measurement of radiation force induced by focused ultrasound beams, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 70 (2023) 138-146. https://doi.org/10.1109/TUFFC.2022.3221049 DOI: https://doi.org/10.1109/TUFFC.2022.3221049

[35] P. Domenighini, F. Costantino, P. L. Gentili, A. Donnadio, M. Nocchetti, A. Macchioni, F. Rossi, F. Cotana, Future perspectives in green hydrogen production by catalyzed sono-photolysis of water, Sustainable Energy and Fuels 8 (2024) 3001-3014. https://doi.org/10.1039/D4SE00277F DOI: https://doi.org/10.1039/D4SE00277F

[36] C. Pétrier, A. Francony, Ultrasonic waste-water treatment: Incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation, Ultrasonics Sonochemistry 4 (1997) 295-300. https://doi.org/10.1016/S1350-4177(97)00036-9 DOI: https://doi.org/10.1016/S1350-4177(97)00036-9

[37] Y. Jiang, C. Petrier, T. D. Waite, Sonolysis of 4-chlorophenol in aqueous solution: Effects of substrate concentration, aqueous temperature and ultrasonic frequency, Ultrasonics Sonochemistry 13 (2006) 415-422. https://doi.org/10.1016/j.ultsonch.2005.07.003 DOI: https://doi.org/10.1016/j.ultsonch.2005.07.003

[38] S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases, Ultrasonics Sonochemistry 22 (2015) 41-50. https://doi.org/10.1016/j.ultsonch.2014.07.011 DOI: https://doi.org/10.1016/j.ultsonch.2014.07.011

[39] H. N. McMurray, D. A. Worsley, B. P. Wilson, Hydrogen evolution and oxygen reduction at a titanium sonotrode, Chemical Communications (1998) 887-888. https://doi.org/10.1039/A800801I DOI: https://doi.org/10.1039/a800801i

[40] Y. Mizukoshi, H. Nakamura, H. Bandow, Y. Maeda, Y. Nagata, Sonolysis of organic liquid: Effect of vapour pressure and evaporation rate, Ultrasonics Sonochemistry 6 (1999) 203-209. https://doi.org/10.1016/S1350-4177(99)00012-7 DOI: https://doi.org/10.1016/S1350-4177(99)00012-7

[41] S. K. Mohapatra, M. Misra, V. K. Mahajan, K. S. Raja, A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water, Journal of Catalysis 246 (2007) 362-369. https://doi.org/10.1016/j.jcat.2006.12.020 DOI: https://doi.org/10.1016/j.jcat.2006.12.020

[42] S. H. Zadeh, Hydrogen production via ultrasound-aided alkaline water electrolysis, Journal of Automation and Control Engineering 2 (2014) 103-109. https://doi.org/10.12720/joace.2.1.103-109 DOI: https://doi.org/10.12720/joace.2.1.103-109

[43] K. Kerboua, N. H. Merabet, Sono-electrolysis performance based on indirect continuous sonication and membraneless alkaline electrolysis: Experiment, modelling and analysis, Ultrasonics Sonochemistry 96 (2023) 106429. https://doi.org/10.1016/j.ultsonch.2023.106429 DOI: https://doi.org/10.1016/j.ultsonch.2023.106429

[44] M. Shestakova, M. Vinatoru, T. J. Mason, E. Iakovleva, M. Sillanpää, Sonoelectrochemical degradation of formic acid using Ti/Ta2O5-SnO2 electrodes, Journal of Molecular Liquids 223 (2016) 388-394. https://doi.org/10.1016/j.molliq.2016.08.054 DOI: https://doi.org/10.1016/j.molliq.2016.08.054

[45] R. Ji, R. Pflieger, M. Virot, S. I. Nikitenko, Multibubble sonochemistry and sonoluminescence at 100 kHz: The missing link between low- and high-frequency ultrasound, Journal of Physical Chemistry B 122 (2018) 6989-6994. https://doi.org/10.1021/acs.jpcb.8b04267 DOI: https://doi.org/10.1021/acs.jpcb.8b04267

[46] A. Singh, A. S. K. Sinha, Intensification of photocatalytic decomposition of water by ultrasound, Journal of Energy Chemistry 27 (2018) 1183-1188. https://doi.org/10.1016/j.jechem.2017.08.001 DOI: https://doi.org/10.1016/j.jechem.2017.08.001

[47] T. T. P. Pham, P. H. D. Nguyen, T. C. Hoang, H. T. L. Duong, T. M. L. Le, K. P. H. Huynh, P. T. D. Nguyen, D. V. N. Vo, Simultaneous production of gaseous fuels with degradation of Rhodamine B using a 40 kHz double-bath-type sonoreactor, International Journal of Hydrogen Energy 46 (2021) 9292-9302. https://doi.org/10.1016/j.ijhydene.2020.12.091 DOI: https://doi.org/10.1016/j.ijhydene.2020.12.091

[48] J. Choi, S. Yoon, Y. Son, Effects of alcohols and dissolved gases on sonochemical generation of hydrogen in a 300 kHz sonoreactor, Ultrasonics Sonochemistry 101 (2023) 106660. https://doi.org/10.1016/j.ultsonch.2023.106660 DOI: https://doi.org/10.1016/j.ultsonch.2023.106660

[49] N. H. Merabet, K. Kerboua, Membrane free alkaline sono-electrolysis for hydrogen production: An experimental approach, International Journal of Hydrogen Energy 49 (2024) 734-753. https://doi.org/10.1016/j.ijhydene.2023.09.061 DOI: https://doi.org/10.1016/j.ijhydene.2023.09.061

[50] J. Gravelle, V. Avramovic, L. Hallez, J. Y. Hihn, B. G. Pollet, Effects of a perpendicular ultrasonic field on planar and porous electrodes for hydrogen production in alkaline conditions, Ultrasonics Sonochemistry 120 (2025) 107481. https://doi.org/10.1016/j.ultsonch.2025.107481 DOI: https://doi.org/10.1016/j.ultsonch.2025.107481

[51] S. Merouani, A. Dehane, O. Hamdaoui, Hydrogen production via water ultrasonication: A review, Ultrasonics Sonochemistry 120 (2025) 107515. https://doi.org/10.1016/j.ultsonch.2025.107515 DOI: https://doi.org/10.1016/j.ultsonch.2025.107515

[52] A. Saad, L. Bai, F. M. S. Christensen, S. Luo, A. Bentien, M. Ashokkumar, Z. Wei, Ultrasound-enhanced alkaline water splitting with fast bubble release and sustained Ni catalysts, Applied Catalysis B: Environmental and Energy 370 (2025) 125152. https://doi.org/10.1016/j.apcatb.2025.125152 DOI: https://doi.org/10.1016/j.apcatb.2025.125152

[53] M. Ashokkumar, J. Lee, Y. Iida, K. Yasui, T. Kozuka, T. Tuziuti, A. Towata, The detection and control of stable and transient acoustic cavitation bubbles, Physical Chemistry Chemical Physics 11 (2009) 10118-10121. https://doi.org/10.1039/B915715H DOI: https://doi.org/10.1039/b915715h

[54] F. Araújo, R. C. Neto, A. S. Moita, Alkaline water electrolysis: Ultrasonic field and hydrogen bubble formation, International Journal of Hydrogen Energy 78 (2024) 594-603. https://doi.org/10.1016/j.ijhydene.2024.06.263 DOI: https://doi.org/10.1016/j.ijhydene.2024.06.263

[55] D. L. Parr IV, C. G. Duda, J. Leddy, Why sonochemistry in a thin layer? Constructive interference, Journal of Physical Chemistry C 127 (2023) 12184-12193. https://doi.org/10.1021/acs.jpcc.3c00804 DOI: https://doi.org/10.1021/acs.jpcc.3c00804

[56] A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D. Fernández Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors, Joule 4 (2020) 555-579. https://doi.org/10.1016/j.joule.2020.01.005 DOI: https://doi.org/10.1016/j.joule.2020.01.005

[57] G. R. Harris, S. M. Howard, A. M. Hurrell, P. A. Lewin, M. E. Schafer, K. A. Wear, V. Wilkens, B. Zeqiri, Hydrophone measurements for biomedical ultrasound applications: A review, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 70 (2023) 85-100. https://doi.org/10.1109/TUFFC.2022.3213185 DOI: https://doi.org/10.1109/TUFFC.2022.3213185

[58] K. M. Cho, P. R. Deshmukh, W. G. Shin, Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis, Ultrasonics Sonochemistry 80 (2021) 105796. https://doi.org/10.1016/j.ultsonch.2021.105796 DOI: https://doi.org/10.1016/j.ultsonch.2021.105796

[59] H. Su, J. Sun, C. Wang, H. Wang, Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water, Ultra¬sonics Sonochemistry 108 (2024) 106968. https://doi.org/10.1016/j.ultsonch.2024.106968 DOI: https://doi.org/10.1016/j.ultsonch.2024.106968

[60] K. Kerboua, O. Hamdaoui, Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models, Ultrasonics Sonochemistry 40 (2018) 194-200. https://doi.org/10.1016/j.ultsonch.2017.07.005 DOI: https://doi.org/10.1016/j.ultsonch.2017.07.005

[61] A. Elmaihy, M. I. Amin, M. Bennaya, A. Rashad, Thermodynamic modeling of alkaline water electrolyzer and assessment of reported cell voltages correlations at low temperature and atmospheric pressure: Critical review, Journal of Energy Storage 96 (2024) 112674. https://doi.org/10.1016/j.est.2024.112674 DOI: https://doi.org/10.1016/j.est.2024.112674

[62] K. Peng, F. G. F. Qin, R. Jiang, S. Kang, Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis, Ultrasonics Sonochemistry 69 (2020) 105253. https://doi.org/10.1016/j.ultsonch.2020.105253 DOI: https://doi.org/10.1016/j.ultsonch.2020.105253

[63] Z. Kobus, M. Krzywicka, A. Starek-Wójcicka, A. Sagan, Effect of the duty cycle of the ultra-sonic processor on the efficiency of extraction of phenolic compounds from Sorbus inter-media, Scientific Reports 12 (2022) 12244. https://doi.org/10.1038/s41598-022-12244-y. DOI: https://doi.org/10.1038/s41598-022-12244-y

[64] S. V. Sancheti, P. R. Gogate, A review of engineering aspects of intensification of chemical synthesis using ultrasound, Ultrasonics Sonochemistry 36 (2017) 527-543. https://doi.org/10.1016/j.ultsonch.2016.08.009 DOI: https://doi.org/10.1016/j.ultsonch.2016.08.009

[65] C. N. Quiroz-Reyes, M. Á. Aguilar-Méndez, Continuous ultrasound and pulsed ultrasound: Selective extraction tools to obtain enriched antioxidants extracts from cocoa beans (Theobroma cacao L.), Innovative Food Science and Emerging Technologies 80 (2022) 103095. https://doi.org/10.1016/j.ifset.2022.103095 DOI: https://doi.org/10.1016/j.ifset.2022.103095

[66] R. A. Al-Juboori, T. Yusaf, L. Bowtell, Energy conversion efficiency of pulsed ultrasound, Energy Procedia 75 (2015) 1560-1568. https://doi.org/10.1016/j.egypro.2015.07.340. DOI: https://doi.org/10.1016/j.egypro.2015.07.340

[67] Y. Sun, X. Ye, Enhancement or reduction of sonochemical activity of pulsed ultrasound compared to continuous ultrasound at 20 kHz?, Molecules 18 (2013) 4858-4867. https://doi.org/10.3390/molecules18054858 DOI: https://doi.org/10.3390/molecules18054858

[68] J. Choi, Y. Son, Effect of dissolved gases on sonochemical oxidation in a 20 kHz probe system: Continuous monitoring of dissolved oxygen concentration and sonochemical oxidation activity, Ultrasonics Sonochemistry 97 (2023) 106452. https://doi.org/10.1016/j.ultsonch.2023.106452 DOI: https://doi.org/10.1016/j.ultsonch.2023.106452

[69] S. Mukherjee, H. Gomez, Effect of dissolved gas on the tensile strength of water, Physics of Fluids 34 (2022) 126112. https://doi.org/10.1063/5.0131165 DOI: https://doi.org/10.1063/5.0131165

[70] J. Il Lee, B. S. Yim, J. M. Kim, Effect of dissolved-gas concentration on bulk nanobubbles generation using ultrasonication, Scientific Reports 10 (2020) 75818. https://doi.org/10.1038/s41598-020-75818-8 DOI: https://doi.org/10.1038/s41598-020-75818-8

[71] S. Lee, Y. Son, Effects of gas saturation and sparging on sonochemical oxidation activity under different liquid level and volume conditions in 300-kHz sonoreactors: Zeroth- and first-order reaction comparison using KI dosimetry and BPA degradation, Ultrasonics Sonochemistry 98 (2023) 106521. https://doi.org/10.1016/j.ultsonch.2023.106521 DOI: https://doi.org/10.1016/j.ultsonch.2023.106521

[72] Y. Son, J. Seo, Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, Part I: H2O2 generation, Ultrasonics Sonochemistry 90 (2022) 106214. https://doi.org/10.1016/j.ultsonch.2022.106214 DOI: https://doi.org/10.1016/j.ultsonch.2022.106214

[73] J. Rooze, E. V. Rebrov, J. C. Schouten, J. T. F. Keurentjes, Dissolved gas and ultrasonic cavitation - A review, Ultrasonics Sonochemistry 20 (2013) 1-11. https://doi.org/10.1016/j.ultsonch.2012.04.013. DOI: https://doi.org/10.1016/j.ultsonch.2012.04.013

[74] K. Leonov, I. Akhatov, The influence of dissolved gas on dynamics of a cavitation bubble in an elastic micro-confinement, International Journal of Heat and Mass Transfer 196 (2022) 123295. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123295 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123295

[75] H. Shinar, T. Ilovitsh, Volumetric passive acoustic mapping and cavitation detection of nanobubbles under low-frequency insonation, ACS Materials Au 5 (2024) 159-169. https://doi.org/10.1021/acsmaterialsau.4c00064 DOI: https://doi.org/10.1021/acsmaterialsau.4c00064

[76] H. A. S. Kamimura, S. Y. Wu, J. Grondin, R. Ji, C. Aurup, W. Zheng, M. Heidmann, A. N. Pouliopoulos, E. E. Konofagou, Real-time passive acoustic mapping using sparse matrix multiplication, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 68 (2021) 164-177. https://doi.org/10.1109/TUFFC.2020.3001848 DOI: https://doi.org/10.1109/TUFFC.2020.3001848

[77] S. Bae, K. Liu, A. N. Pouliopoulos, R. Ji, E. E. Konofagou, Real-time passive acoustic mapping with enhanced spatial resolution in neuronavigation-guided focused ultrasound for blood-brain barrier opening, IEEE Transactions on Biomedical Engineering 70 (2023) 2874-2885. https://doi.org/10.1109/TBME.2023.3266952 DOI: https://doi.org/10.1109/TBME.2023.3266952

[78] S. W. Ohl, E. Klaseboer, B. C. Khoo, Bubbles with shock waves and ultrasound, Interface Focus 5 (2015) 20150019. https://doi.org/10.1098/rsfs.2015.0019 DOI: https://doi.org/10.1098/rsfs.2015.0019

[79] K. Maeda, A. D. Maxwell, T. Colonius, W. Kreider, M. R. Bailey, Energy shielding by cavitation bubble clouds in burst wave lithotripsy, Journal of the Acoustical Society of America 144 (2018) 2952. https://doi.org/10.1121/1.5079641 DOI: https://doi.org/10.1121/1.5079641

[80] K. Maeda, A. D. Maxwell, Controlling the dynamics of cloud cavitation bubbles through acoustic feedback, Physical Review Applied 15 (2021) 034033. https://doi.org/10.1103/PhysRevApplied.15.034033 DOI: https://doi.org/10.1103/PhysRevApplied.15.034033

[81] H. McKenzie, A. M. Esposito, H. D. Peterson, H. E. Miller, H. J. Stanford, Hydrogen Shot: Water electrolysis technology assessment. https://www.energy.gov/sites/default/files/2024-12/hydrogen-shot-water-electrolysis-technology-assessment.pdf (accessed September 9, 2025)

[82] Y. Luo, L. Wang, Q. Chen, Z. Wang, M. Zheng, Y. Hou, Elucidating the effect of the catalyst layer morphology on the growth and detachment of bubbles in water electrolysis via lattice Boltzmann modeling, ACS Applied Materials and Interfaces 17 (2025) 15499-15509. https://doi.org/10.1021/acsami.4c22527 DOI: https://doi.org/10.1021/acsami.4c22527

[83] S. Park, A. Bashkatov, J. J. J. Eggebeen, S. Lee, D. Lohse, D. Krug, M. T. M. Koper, Combined effects of electrode morphology and electrolyte composition on single H2 gas bubble detachment during hydrogen evolution reaction, Nanoscale 17 (2025) 10020-10034. https://doi.org/10.1039/d5nr00234f DOI: https://doi.org/10.1039/D5NR00234F

[84] S. Zhang, X. Cao, B. Wang, J. Wei, L. Zhou, J. Han, J. Yun, Application of high-frequency pulsed electrolysis technology in enhancing hydrogen production efficiency and energy saving potential analysis, International Journal of Hydrogen Energy 109 (2025) 684-693. https://doi.org/10.1016/j.ijhydene.2025.02.158 DOI: https://doi.org/10.1016/j.ijhydene.2025.02.158

[85] L. P. Ferraz, E. K. Silva, Unraveling the thermal effects of high-intensity ultrasound: A practical guide to acoustic power determination and heat management, ACS Omega 10 (2025) 20277-20285. https://doi.org/10.1021/acsomega.4c11498 DOI: https://doi.org/10.1021/acsomega.4c11498

[86] S. Puteanus, T. Miličić, U. Feldmann, T. Vidaković-Koch, Efficiency improvement by pulsed water electrolysis: An unjustified hope, International Journal of Hydrogen Energy 113 (2025) 478-484. https://doi.org/10.1016/j.ijhydene.2025.02.348 DOI: https://doi.org/10.1016/j.ijhydene.2025.02.348

[87] S. Therre, M. Fournelle, S. Tretbar, Optimization of 3D passive acoustic mapping image metrics: Impact of sensor geometry and beamforming approach, Sensors 24 (2024) 1868. https://doi.org/10.3390/s24061868 DOI: https://doi.org/10.3390/s24061868

[88] N. Caso, K. Patel, T. Sun, Passive acoustic dynamic differentiation and mapping: A time-domain passive cavitation localization and classification approach, bioRxiv (2025). https://doi.org/10.1101/2025.04.08.647829 DOI: https://doi.org/10.1101/2025.04.08.647829

[89] C. M. Huber, N. Dorsch, H. Ermert, M. Vossiek, I. Ullmann, S. Lyer, Passive cavitation mapping for biomedical applications using higher order delay multiply and sum beamformer with linear complexity, Ultrasonics 153 (2025) 107653. https://doi.org/10.1016/j.ultras.2025.107653 DOI: https://doi.org/10.1016/j.ultras.2025.107653

[90] Y. Zhu, G. Zhang, Q. Zhang, L. Luo, B. Ding, X. Guo, D. Zhang, J. Tu, Real-time passive cavitation mapping and B-mode fusion imaging via hybrid adaptive beamformer with modified diagnostic ultrasound platform, Ultrasonics 142 (2024) 107375. https://doi.org/10.1016/j.ultras.2024.107375 DOI: https://doi.org/10.1016/j.ultras.2024.107375

[91] H. Geng, T. Chen, J. Chen, B. Huang, G. Wang, Temperature effects on single cavitation bubble dynamics under the free field condition: Experimental and theoretical investigations on water, Ultrasonics Sonochemistry 120 (2025) 107520. https://doi.org/10.1016/j.ultsonch.2025.107520 DOI: https://doi.org/10.1016/j.ultsonch.2025.107520

[92] Ö. Akay, A. Bashkatov, E. Coy, K. Eckert, K. E. Einarsrud, A. Friedrich, B. Kimmel, S. Loos, G. Mutschke, L. Röntzsch, M. D. Symes, X. Yang, K. Brinkert, Electrolysis in reduced gravitational environments: Current research perspectives and future applications, NPJ Microgravity 8 (2022) 56. https://doi.org/10.1038/S41526-022-00239-Y DOI: https://doi.org/10.1038/s41526-022-00239-y

[93] Ö. Akay, M. Monfort-Castillo, T. St Francis, J. Becker, S. Saravanabavan, Á. Romero-Calvo, K. Brinkert, Magnetically induced convection enhances water electrolysis in microgravity, Nature Chemistry 17 (2025) 1673–1679. https://doi.org/10.1038/S41557-025-01890-0. DOI: https://doi.org/10.1038/s41557-025-01890-0

[94] P. Vensaus, Y. Liang, J. P. Ansermet, G. J. A. A. Soler-Illia, M. Lingenfelder, Enhancement of electrocatalysis through magnetic field effects on mass transport, Nature Communications 15 (2024) 2867. https://doi.org/10.1038/s41467-024-46980-8 DOI: https://doi.org/10.1038/s41467-024-46980-8

[95] F. Rocha, C. Georgiadis, K. Van Droogenbroek, R. Delmelle, X. Pinon, G. Pyka, G. Kerckhofs, F. Egert, F. Razmjooei, S. A. Ansar, S. Mitsushima, J. Proost, Proton exchange membrane-like alkaline water electrolysis using flow-engineered three-dimensional electrodes, Nature Communications 15 (2024) 7444. https://doi.org/10.1038/s41467-024-51704-z DOI: https://doi.org/10.1038/s41467-024-51704-z

[96] L. Wu, Z. Pan, S. Yuan, X. Shi, Y. Liu, F. Liu, X. Yan, L. An, A dual-layer flow field design capable of enhancing bubble self-pumping and its application in water electrolyzer, Chemical Engineering Journal 488 (2024) 151000. https://doi.org/10.1016/j.cej.2024.151000 DOI: https://doi.org/10.1016/j.cej.2024.151000

[97] J. Bleeker, C. van Kasteren, J. R. van Ommen, D. A. Vermaas, Gas bubble removal from a zero-gap alkaline electrolyser with a pressure swing and why foam electrodes might not be suitable at high current densities, International Journal of Hydrogen Energy 57 (2024) 1398-1407. https://doi.org/10.1016/j.ijhydene.2024.01.147 DOI: https://doi.org/10.1016/j.ijhydene.2024.01.147

[98] C. Zhang, Z. Xu, N. Han, Y. Tian, T. Kallio, C. Yu, L. Jiang, Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer, Science Advances 9 (2023) eadd6978. https://doi.org/10.1126/sciadv.add6978 DOI: https://doi.org/10.1126/sciadv.add6978

Published

20-01-2026

Issue

Section

Electrochemical Engineering

How to Cite

Ultrasound-enhanced water electrolysis for hydrogen production: Mechanisms, metrology and energy metrics: Review paper. (2026). Journal of Electrochemical Science and Engineering, 3045. https://doi.org/10.5599/jese.3045

Funding data

Similar Articles

1-10 of 118

You may also start an advanced similarity search for this article.