Ultrasound-enhanced water electrolysis for hydrogen production: Mechanisms, metrology and energy metrics
Review paper
DOI:
https://doi.org/10.5599/jese.3045Keywords:
Sono-electrolysis, acoustic cavitation, hybrid sono-hydrogen systemsAbstract
Ultrasound intensifies hydrogen production in water electrolysis cells by thinning boundary layers, accelerating bubble detachment, and, in tuned windows, modulating cavitation chemistry, yet cross-study claims remain difficult to compare. Focusing on ultrasound-enhanced water electrolysis (sono-electrolysis), this review aligns reporting with IEC 61161 (radiation-force acoustic power) and IEC 62127-2:2025 (hydrophone calibration); requires delivered acoustic intensity at the electrode, Idel / W·cm⁻², with stated traceability; pairs isothermal control with uncertainty budgets; and benchmarks performance using Δ-metrics: Δj (current-density gain at fixed cell voltage), Δη (cell voltage/overpotential reduction at fixed current density) and ΔH₂ (hydrogen production rate gain at matched electrical input), together with specific energy consumption (SEC, kWh·kg⁻¹ H₂). A window-based synthesis indicates that, under isothermal operation, 20 to 40 kHz with delivered intensity ≈0.2 to 1.0 W·cm⁻² reproducibly yields Δj ≈ 15 to 30 %, Δη ≈ 40 to 120 mV, ΔH₂ ≈ 10 to 30 %, and net SEC improvements of ~8 to 12 % when auxiliary loads are included, whereas at higher dose (Idel ≈ 1.0 to 1.6 W·cm⁻²) non-uniform fields, cloud shielding, and heating can saturate or reverse benefits. To prevent metric conflation, hybrid sono-hydrogen routes are reviewed separately. The review concludes by proposing a minimum reporting set-frequency, waveform/duty and pulse repetition frequency, Idel (traceability/uncertainty), geometry/stand-off, electrolyte and dissolved gas, bulk temperature and runtime, gas metrology with temperature/pressure corrections, SEC boundaries and replicates/statistics, and by outlining priorities for operando cavitation-electrochemistry co-registration, geometry/void-fraction-aware scale-up, and durability under combined fields, to support reproducible, energy-accounted, and comparable studies across laboratories.
Downloads
References
[1] International Energy Agency, Global Hydrogen Review 2024. https://www.iea.org/reports/global-hydrogen-review-2024 (accessed September 24, 2025).
[2] R. F. Martínez, G. Cravotto, P. Cintas, Organic sonochemistry: A chemist’s timely perspective on mechanisms and reactivity, Journal of Organic Chemistry 86 (2021) 13833-13856. https://doi.org/10.1021/acs.joc.1c00805 DOI: https://doi.org/10.1021/acs.joc.1c00805
[3] S. Kwon, S. Bae, G. Son, Experimental study of ultrasound-assisted alkaline water electrolysis for hydrogen production, Journal of Mechanical Science and Technology 39 (2025) 663-669. https://doi.org/10.1007/s12206-025-0113-9 DOI: https://doi.org/10.1007/s12206-025-0113-9
[4] Y. H. Teoh, S. Y. Liew, H. G. How, H. Yaqoob, M. Y. Idroas, M. A. Jamil, S. U. Mahmud, T. D. Le, H. M. Ali, M. W. Shahzad, Investigating sono-electrolysis for hydrogen generation and energy optimization, International Communications in Heat and Mass Transfer 164 (2025) 108980. https://doi.org/10.1016/j.icheatmasstransfer.2025.108980 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2025.108980
[5] IEC 62127-2:2025, International Electrotechnical Commission. https://webstore.iec.ch/en/publication/68572 (accessed September 24, 2025)
[6] IEC 61161:2013, International Electrotechnical Commission. https://webstore.iec.ch/en/publication/4708 (accessed August 26, 2025)
[7] IEC TS 62462:2017, Intertek Inform. https://www.intertekinform.com/en-au/standards/iec-ts-62462-2017-561987_saig_iec_iec_2995392 (accessed September 9, 2025)
[8] S. Joshi, C. Agarkoti, P. R. Gogate, Mapping of 20 L capacity ultrasonic reactor using cavitation activity meter and dye degradation, Ultrasonics Sonochemistry 101 (2023) 106688. https://doi.org/10.1016/j.ultsonch.2023.106688 DOI: https://doi.org/10.1016/j.ultsonch.2023.106688
[9] D. Meroni, R. Djellabi, M. Ashokkumar, C. L. Bianchi, D. C. Boffito, Sonoprocessing: From concepts to large-scale reactors, Chemical Reviews 122 (2022) 3219-3258. https://doi.org/10.1021/acs.chemrev.1c00438 DOI: https://doi.org/10.1021/acs.chemrev.1c00438
[10] P. Adamou, E. Harkou, A. Villa, A. Constantinou, N. Dimitratos, Ultrasonic reactor set-ups and applications, Ultrasonics Sonochemistry 107 (2024) 106925. https://doi.org/10.1016/j.ultsonch.2024.106925 DOI: https://doi.org/10.1016/j.ultsonch.2024.106925
[11] N. H. Merabet, K. Kerboua, Green hydrogen from sono-electrolysis: A coupled numerical and experimental study of the ultrasound assisted membraneless electrolysis of water supplied by PV, Fuel 356 (2024) 129625. https://doi.org/10.1016/j.fuel.2023.129625 DOI: https://doi.org/10.1016/j.fuel.2023.129625
[12] J. Gravelle, J. Y. Hihn, B. G. Pollet, Power ultrasound as performance enhancer for alkaline water electrolysis: A review, International Journal of Hydrogen Energy 100 (2025) 428-441. https://doi.org/10.1016/j.ijhydene.2024.12.243 DOI: https://doi.org/10.1016/j.ijhydene.2024.12.243
[13] Ultrasound power and radiation force balances, National Physical Laboratory (NPL). https://www.npl.co.uk/products-services/ultrasound/radiation-force-balance (accessed September 6, 2025)
[14] I. Fernández-Osete, D. Bermejo, X. Ayneto-Gubert, X. Escaler, Review of the uses of acoustic emissions in monitoring cavitation erosion and crack propagation, Foundations 4 (2024) 114-133. https://doi.org/10.3390/foundations4010009 DOI: https://doi.org/10.3390/foundations4010009
[15] C. E. Brennen, Cavitation and Bubble Dynamics, Cambridge University Press, Cambridge, United Kingdom, 2013. https://doi.org/10.1017/CBO9781107338760 DOI: https://doi.org/10.1017/CBO9781107338760
[16] T. G. Leighton, R. E. Apfel, The Acoustic Bubble, Journal of the Acoustical Society of America 96 (1994) 2616. https://doi.org/10.1121/1.410082 DOI: https://doi.org/10.1121/1.410082
[17] F. Foroughi, C. Immanuel Bernäcker, L. Röntzsch, B. G. Pollet, Understanding the effects of ultrasound (408 kHz) on the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on Raney-Ni in alkaline media, Ultrasonics Sonochemistry 84 (2022) 105979. https://doi.org/10.1016/j.ultsonch.2022.105979 DOI: https://doi.org/10.1016/j.ultsonch.2022.105979
[18] Y. Zhu, X. Zhu, I. Soyler, X. Pan, L. X. Liu, M. J. Bussemaker, Prediction of sonochemical activity based on dimensionless analysis and multivariate linear regression, Ultrasonics Sonochemistry 120 (2025) 107427. https://doi.org/10.1016/j.ultsonch.2025.107427 DOI: https://doi.org/10.1016/j.ultsonch.2025.107427
[19] K. Fattahi, G. Dodier, E. Robert, D. C. Boffito, Flow effects on sonochemical oxidation activity in a 20 kHz ultrasonic horn system, Chemical Engineering Journal 489 (2024) 151203. https://doi.org/10.1016/j.cej.2024.151203 DOI: https://doi.org/10.1016/j.cej.2024.151203
[20] C. Hwang, I. Na, Y. Son, Sonochemical oxidation activity in 20-kHz probe systems: The effects of vessel shape, vessel wall thickness, and probe position, Ultrasonics Sonochemistry 121 (2025) 107519. https://doi.org/10.1016/j.ultsonch.2025.107519 DOI: https://doi.org/10.1016/j.ultsonch.2025.107519
[21] G. Viciconte, V. P. Sarvothaman, P. Guida, T. T. Truscott, W. L. Roberts, High-speed imaging and coumarin dosimetry of horn type ultrasonic reactors: Influence of probe diameter and amplitude, Ultrasonics Sonochemistry 119 (2025) 107362. https://doi.org/10.1016/j.ultsonch.2025.107362 DOI: https://doi.org/10.1016/j.ultsonch.2025.107362
[22] Lord Rayleigh, VIII. On the pressure developed in a liquid during the collapse of a spherical cavity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 34 (1917) 94-98. https://doi.org/10.1080/14786440808635681 DOI: https://doi.org/10.1080/14786440808635681
[23] J. B. Keller, M. Miksis, Bubble oscillations of large amplitude, Journal of the Acoustical Society of America 68 (1980) 628-633. https://doi.org/10.1121/1.384720 DOI: https://doi.org/10.1121/1.384720
[24] T. J. Tiong, J. K. Chu, K. W. Tan, Advancements in acoustic cavitation modelling: Progress, challenges, and future directions in sonochemical reactor design, Ultrasonics Sonochemistry 112 (2024) 107163. https://doi.org/10.1016/j.ultsonch.2024.107163 DOI: https://doi.org/10.1016/j.ultsonch.2024.107163
[25] K. Yasui, Origin of the broad-band noise in acoustic cavitation, Ultrasonics Sonochemistry 93 (2022) 106276. https://doi.org/10.1016/j.ultsonch.2022.106276 DOI: https://doi.org/10.1016/j.ultsonch.2022.106276
[26] E. A. Neppiras, Acoustic cavitation series: Part one: Acoustic cavitation: An introduction, Ultrasonics 22 (1984) 25-28. https://doi.org/10.1016/0041-624X(84)90057-X DOI: https://doi.org/10.1016/0041-624X(84)90057-X
[27] A. G. Athanassiadis, Z. Ma, N. Moreno-Gomez, K. Melde, E. Choi, R. Goyal, P. Fischer, Ultrasound-responsive systems as components for smart materials, Chemical Reviews 122 (2021) 5165-5208. https://doi.org/10.1021/acs.chemrev.1c00622 DOI: https://doi.org/10.1021/acs.chemrev.1c00622
[28] P. Peñas, Á. M. Soto, D. Lohse, G. Lajoinie, D. Van Der Meer, Ultrasound-enhanced mass transfer during the growth and dissolution of surface gas bubbles, International Journal of Heat and Mass Transfer 174 (2021) 121069. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121069 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121069
[29] B. Jia, H. Soyama, Non-spherical cavitation bubbles: A review, Fluids 9 (2024) 249. https://doi.org/10.3390/fluids9110249 DOI: https://doi.org/10.3390/fluids9110249
[30] A. B. Sieber, D. B. Preso, M. Farhat, Cavitation bubble dynamics and microjet atomization near tissue-mimicking materials, Physics of Fluids 35 (2023) 013306. https://doi.org/10.1063/5.0136577 DOI: https://doi.org/10.1063/5.0136577
[31] X. Lu, C. Chen, K. Dong, Z. Li, J. Chen, An equivalent method of jet impact loading from collapsing near-wall acoustic bubbles: A preliminary study, Ultrasonics Sonochemistry 79 (2021) 105760. https://doi.org/10.1016/j.ultsonch.2021.105760 DOI: https://doi.org/10.1016/j.ultsonch.2021.105760
[32] A. Kiyama, T. Shimazaki, J. M. Gordillo, Y. Tagawa, Direction of the microjet produced by the collapse of a cavitation bubble located in a corner of a wall and a free surface, Physical Review Fluids 6 (2021) 083601. https://doi.org/10.1103/PhysRevFluids.6.083601 DOI: https://doi.org/10.1103/PhysRevFluids.6.083601
[33] H. Su, J. Sun, C. Wang, H. Wang, Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation, Ultrasonics Sonochemistry 102 (2024) 106734. https://doi.org/10.1016/j.ultsonch.2023.106734 DOI: https://doi.org/10.1016/j.ultsonch.2023.106734
[34] A. Sahoo, H. He, D. Darrow, C. C. Chen, E. S. Ebbini, Image-guided measurement of radiation force induced by focused ultrasound beams, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 70 (2023) 138-146. https://doi.org/10.1109/TUFFC.2022.3221049 DOI: https://doi.org/10.1109/TUFFC.2022.3221049
[35] P. Domenighini, F. Costantino, P. L. Gentili, A. Donnadio, M. Nocchetti, A. Macchioni, F. Rossi, F. Cotana, Future perspectives in green hydrogen production by catalyzed sono-photolysis of water, Sustainable Energy and Fuels 8 (2024) 3001-3014. https://doi.org/10.1039/D4SE00277F DOI: https://doi.org/10.1039/D4SE00277F
[36] C. Pétrier, A. Francony, Ultrasonic waste-water treatment: Incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation, Ultrasonics Sonochemistry 4 (1997) 295-300. https://doi.org/10.1016/S1350-4177(97)00036-9 DOI: https://doi.org/10.1016/S1350-4177(97)00036-9
[37] Y. Jiang, C. Petrier, T. D. Waite, Sonolysis of 4-chlorophenol in aqueous solution: Effects of substrate concentration, aqueous temperature and ultrasonic frequency, Ultrasonics Sonochemistry 13 (2006) 415-422. https://doi.org/10.1016/j.ultsonch.2005.07.003 DOI: https://doi.org/10.1016/j.ultsonch.2005.07.003
[38] S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases, Ultrasonics Sonochemistry 22 (2015) 41-50. https://doi.org/10.1016/j.ultsonch.2014.07.011 DOI: https://doi.org/10.1016/j.ultsonch.2014.07.011
[39] H. N. McMurray, D. A. Worsley, B. P. Wilson, Hydrogen evolution and oxygen reduction at a titanium sonotrode, Chemical Communications (1998) 887-888. https://doi.org/10.1039/A800801I DOI: https://doi.org/10.1039/a800801i
[40] Y. Mizukoshi, H. Nakamura, H. Bandow, Y. Maeda, Y. Nagata, Sonolysis of organic liquid: Effect of vapour pressure and evaporation rate, Ultrasonics Sonochemistry 6 (1999) 203-209. https://doi.org/10.1016/S1350-4177(99)00012-7 DOI: https://doi.org/10.1016/S1350-4177(99)00012-7
[41] S. K. Mohapatra, M. Misra, V. K. Mahajan, K. S. Raja, A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water, Journal of Catalysis 246 (2007) 362-369. https://doi.org/10.1016/j.jcat.2006.12.020 DOI: https://doi.org/10.1016/j.jcat.2006.12.020
[42] S. H. Zadeh, Hydrogen production via ultrasound-aided alkaline water electrolysis, Journal of Automation and Control Engineering 2 (2014) 103-109. https://doi.org/10.12720/joace.2.1.103-109 DOI: https://doi.org/10.12720/joace.2.1.103-109
[43] K. Kerboua, N. H. Merabet, Sono-electrolysis performance based on indirect continuous sonication and membraneless alkaline electrolysis: Experiment, modelling and analysis, Ultrasonics Sonochemistry 96 (2023) 106429. https://doi.org/10.1016/j.ultsonch.2023.106429 DOI: https://doi.org/10.1016/j.ultsonch.2023.106429
[44] M. Shestakova, M. Vinatoru, T. J. Mason, E. Iakovleva, M. Sillanpää, Sonoelectrochemical degradation of formic acid using Ti/Ta2O5-SnO2 electrodes, Journal of Molecular Liquids 223 (2016) 388-394. https://doi.org/10.1016/j.molliq.2016.08.054 DOI: https://doi.org/10.1016/j.molliq.2016.08.054
[45] R. Ji, R. Pflieger, M. Virot, S. I. Nikitenko, Multibubble sonochemistry and sonoluminescence at 100 kHz: The missing link between low- and high-frequency ultrasound, Journal of Physical Chemistry B 122 (2018) 6989-6994. https://doi.org/10.1021/acs.jpcb.8b04267 DOI: https://doi.org/10.1021/acs.jpcb.8b04267
[46] A. Singh, A. S. K. Sinha, Intensification of photocatalytic decomposition of water by ultrasound, Journal of Energy Chemistry 27 (2018) 1183-1188. https://doi.org/10.1016/j.jechem.2017.08.001 DOI: https://doi.org/10.1016/j.jechem.2017.08.001
[47] T. T. P. Pham, P. H. D. Nguyen, T. C. Hoang, H. T. L. Duong, T. M. L. Le, K. P. H. Huynh, P. T. D. Nguyen, D. V. N. Vo, Simultaneous production of gaseous fuels with degradation of Rhodamine B using a 40 kHz double-bath-type sonoreactor, International Journal of Hydrogen Energy 46 (2021) 9292-9302. https://doi.org/10.1016/j.ijhydene.2020.12.091 DOI: https://doi.org/10.1016/j.ijhydene.2020.12.091
[48] J. Choi, S. Yoon, Y. Son, Effects of alcohols and dissolved gases on sonochemical generation of hydrogen in a 300 kHz sonoreactor, Ultrasonics Sonochemistry 101 (2023) 106660. https://doi.org/10.1016/j.ultsonch.2023.106660 DOI: https://doi.org/10.1016/j.ultsonch.2023.106660
[49] N. H. Merabet, K. Kerboua, Membrane free alkaline sono-electrolysis for hydrogen production: An experimental approach, International Journal of Hydrogen Energy 49 (2024) 734-753. https://doi.org/10.1016/j.ijhydene.2023.09.061 DOI: https://doi.org/10.1016/j.ijhydene.2023.09.061
[50] J. Gravelle, V. Avramovic, L. Hallez, J. Y. Hihn, B. G. Pollet, Effects of a perpendicular ultrasonic field on planar and porous electrodes for hydrogen production in alkaline conditions, Ultrasonics Sonochemistry 120 (2025) 107481. https://doi.org/10.1016/j.ultsonch.2025.107481 DOI: https://doi.org/10.1016/j.ultsonch.2025.107481
[51] S. Merouani, A. Dehane, O. Hamdaoui, Hydrogen production via water ultrasonication: A review, Ultrasonics Sonochemistry 120 (2025) 107515. https://doi.org/10.1016/j.ultsonch.2025.107515 DOI: https://doi.org/10.1016/j.ultsonch.2025.107515
[52] A. Saad, L. Bai, F. M. S. Christensen, S. Luo, A. Bentien, M. Ashokkumar, Z. Wei, Ultrasound-enhanced alkaline water splitting with fast bubble release and sustained Ni catalysts, Applied Catalysis B: Environmental and Energy 370 (2025) 125152. https://doi.org/10.1016/j.apcatb.2025.125152 DOI: https://doi.org/10.1016/j.apcatb.2025.125152
[53] M. Ashokkumar, J. Lee, Y. Iida, K. Yasui, T. Kozuka, T. Tuziuti, A. Towata, The detection and control of stable and transient acoustic cavitation bubbles, Physical Chemistry Chemical Physics 11 (2009) 10118-10121. https://doi.org/10.1039/B915715H DOI: https://doi.org/10.1039/b915715h
[54] F. Araújo, R. C. Neto, A. S. Moita, Alkaline water electrolysis: Ultrasonic field and hydrogen bubble formation, International Journal of Hydrogen Energy 78 (2024) 594-603. https://doi.org/10.1016/j.ijhydene.2024.06.263 DOI: https://doi.org/10.1016/j.ijhydene.2024.06.263
[55] D. L. Parr IV, C. G. Duda, J. Leddy, Why sonochemistry in a thin layer? Constructive interference, Journal of Physical Chemistry C 127 (2023) 12184-12193. https://doi.org/10.1021/acs.jpcc.3c00804 DOI: https://doi.org/10.1021/acs.jpcc.3c00804
[56] A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D. Fernández Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors, Joule 4 (2020) 555-579. https://doi.org/10.1016/j.joule.2020.01.005 DOI: https://doi.org/10.1016/j.joule.2020.01.005
[57] G. R. Harris, S. M. Howard, A. M. Hurrell, P. A. Lewin, M. E. Schafer, K. A. Wear, V. Wilkens, B. Zeqiri, Hydrophone measurements for biomedical ultrasound applications: A review, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 70 (2023) 85-100. https://doi.org/10.1109/TUFFC.2022.3213185 DOI: https://doi.org/10.1109/TUFFC.2022.3213185
[58] K. M. Cho, P. R. Deshmukh, W. G. Shin, Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis, Ultrasonics Sonochemistry 80 (2021) 105796. https://doi.org/10.1016/j.ultsonch.2021.105796 DOI: https://doi.org/10.1016/j.ultsonch.2021.105796
[59] H. Su, J. Sun, C. Wang, H. Wang, Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water, Ultra¬sonics Sonochemistry 108 (2024) 106968. https://doi.org/10.1016/j.ultsonch.2024.106968 DOI: https://doi.org/10.1016/j.ultsonch.2024.106968
[60] K. Kerboua, O. Hamdaoui, Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models, Ultrasonics Sonochemistry 40 (2018) 194-200. https://doi.org/10.1016/j.ultsonch.2017.07.005 DOI: https://doi.org/10.1016/j.ultsonch.2017.07.005
[61] A. Elmaihy, M. I. Amin, M. Bennaya, A. Rashad, Thermodynamic modeling of alkaline water electrolyzer and assessment of reported cell voltages correlations at low temperature and atmospheric pressure: Critical review, Journal of Energy Storage 96 (2024) 112674. https://doi.org/10.1016/j.est.2024.112674 DOI: https://doi.org/10.1016/j.est.2024.112674
[62] K. Peng, F. G. F. Qin, R. Jiang, S. Kang, Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis, Ultrasonics Sonochemistry 69 (2020) 105253. https://doi.org/10.1016/j.ultsonch.2020.105253 DOI: https://doi.org/10.1016/j.ultsonch.2020.105253
[63] Z. Kobus, M. Krzywicka, A. Starek-Wójcicka, A. Sagan, Effect of the duty cycle of the ultra-sonic processor on the efficiency of extraction of phenolic compounds from Sorbus inter-media, Scientific Reports 12 (2022) 12244. https://doi.org/10.1038/s41598-022-12244-y. DOI: https://doi.org/10.1038/s41598-022-12244-y
[64] S. V. Sancheti, P. R. Gogate, A review of engineering aspects of intensification of chemical synthesis using ultrasound, Ultrasonics Sonochemistry 36 (2017) 527-543. https://doi.org/10.1016/j.ultsonch.2016.08.009 DOI: https://doi.org/10.1016/j.ultsonch.2016.08.009
[65] C. N. Quiroz-Reyes, M. Á. Aguilar-Méndez, Continuous ultrasound and pulsed ultrasound: Selective extraction tools to obtain enriched antioxidants extracts from cocoa beans (Theobroma cacao L.), Innovative Food Science and Emerging Technologies 80 (2022) 103095. https://doi.org/10.1016/j.ifset.2022.103095 DOI: https://doi.org/10.1016/j.ifset.2022.103095
[66] R. A. Al-Juboori, T. Yusaf, L. Bowtell, Energy conversion efficiency of pulsed ultrasound, Energy Procedia 75 (2015) 1560-1568. https://doi.org/10.1016/j.egypro.2015.07.340. DOI: https://doi.org/10.1016/j.egypro.2015.07.340
[67] Y. Sun, X. Ye, Enhancement or reduction of sonochemical activity of pulsed ultrasound compared to continuous ultrasound at 20 kHz?, Molecules 18 (2013) 4858-4867. https://doi.org/10.3390/molecules18054858 DOI: https://doi.org/10.3390/molecules18054858
[68] J. Choi, Y. Son, Effect of dissolved gases on sonochemical oxidation in a 20 kHz probe system: Continuous monitoring of dissolved oxygen concentration and sonochemical oxidation activity, Ultrasonics Sonochemistry 97 (2023) 106452. https://doi.org/10.1016/j.ultsonch.2023.106452 DOI: https://doi.org/10.1016/j.ultsonch.2023.106452
[69] S. Mukherjee, H. Gomez, Effect of dissolved gas on the tensile strength of water, Physics of Fluids 34 (2022) 126112. https://doi.org/10.1063/5.0131165 DOI: https://doi.org/10.1063/5.0131165
[70] J. Il Lee, B. S. Yim, J. M. Kim, Effect of dissolved-gas concentration on bulk nanobubbles generation using ultrasonication, Scientific Reports 10 (2020) 75818. https://doi.org/10.1038/s41598-020-75818-8 DOI: https://doi.org/10.1038/s41598-020-75818-8
[71] S. Lee, Y. Son, Effects of gas saturation and sparging on sonochemical oxidation activity under different liquid level and volume conditions in 300-kHz sonoreactors: Zeroth- and first-order reaction comparison using KI dosimetry and BPA degradation, Ultrasonics Sonochemistry 98 (2023) 106521. https://doi.org/10.1016/j.ultsonch.2023.106521 DOI: https://doi.org/10.1016/j.ultsonch.2023.106521
[72] Y. Son, J. Seo, Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, Part I: H2O2 generation, Ultrasonics Sonochemistry 90 (2022) 106214. https://doi.org/10.1016/j.ultsonch.2022.106214 DOI: https://doi.org/10.1016/j.ultsonch.2022.106214
[73] J. Rooze, E. V. Rebrov, J. C. Schouten, J. T. F. Keurentjes, Dissolved gas and ultrasonic cavitation - A review, Ultrasonics Sonochemistry 20 (2013) 1-11. https://doi.org/10.1016/j.ultsonch.2012.04.013. DOI: https://doi.org/10.1016/j.ultsonch.2012.04.013
[74] K. Leonov, I. Akhatov, The influence of dissolved gas on dynamics of a cavitation bubble in an elastic micro-confinement, International Journal of Heat and Mass Transfer 196 (2022) 123295. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123295 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123295
[75] H. Shinar, T. Ilovitsh, Volumetric passive acoustic mapping and cavitation detection of nanobubbles under low-frequency insonation, ACS Materials Au 5 (2024) 159-169. https://doi.org/10.1021/acsmaterialsau.4c00064 DOI: https://doi.org/10.1021/acsmaterialsau.4c00064
[76] H. A. S. Kamimura, S. Y. Wu, J. Grondin, R. Ji, C. Aurup, W. Zheng, M. Heidmann, A. N. Pouliopoulos, E. E. Konofagou, Real-time passive acoustic mapping using sparse matrix multiplication, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 68 (2021) 164-177. https://doi.org/10.1109/TUFFC.2020.3001848 DOI: https://doi.org/10.1109/TUFFC.2020.3001848
[77] S. Bae, K. Liu, A. N. Pouliopoulos, R. Ji, E. E. Konofagou, Real-time passive acoustic mapping with enhanced spatial resolution in neuronavigation-guided focused ultrasound for blood-brain barrier opening, IEEE Transactions on Biomedical Engineering 70 (2023) 2874-2885. https://doi.org/10.1109/TBME.2023.3266952 DOI: https://doi.org/10.1109/TBME.2023.3266952
[78] S. W. Ohl, E. Klaseboer, B. C. Khoo, Bubbles with shock waves and ultrasound, Interface Focus 5 (2015) 20150019. https://doi.org/10.1098/rsfs.2015.0019 DOI: https://doi.org/10.1098/rsfs.2015.0019
[79] K. Maeda, A. D. Maxwell, T. Colonius, W. Kreider, M. R. Bailey, Energy shielding by cavitation bubble clouds in burst wave lithotripsy, Journal of the Acoustical Society of America 144 (2018) 2952. https://doi.org/10.1121/1.5079641 DOI: https://doi.org/10.1121/1.5079641
[80] K. Maeda, A. D. Maxwell, Controlling the dynamics of cloud cavitation bubbles through acoustic feedback, Physical Review Applied 15 (2021) 034033. https://doi.org/10.1103/PhysRevApplied.15.034033 DOI: https://doi.org/10.1103/PhysRevApplied.15.034033
[81] H. McKenzie, A. M. Esposito, H. D. Peterson, H. E. Miller, H. J. Stanford, Hydrogen Shot: Water electrolysis technology assessment. https://www.energy.gov/sites/default/files/2024-12/hydrogen-shot-water-electrolysis-technology-assessment.pdf (accessed September 9, 2025)
[82] Y. Luo, L. Wang, Q. Chen, Z. Wang, M. Zheng, Y. Hou, Elucidating the effect of the catalyst layer morphology on the growth and detachment of bubbles in water electrolysis via lattice Boltzmann modeling, ACS Applied Materials and Interfaces 17 (2025) 15499-15509. https://doi.org/10.1021/acsami.4c22527 DOI: https://doi.org/10.1021/acsami.4c22527
[83] S. Park, A. Bashkatov, J. J. J. Eggebeen, S. Lee, D. Lohse, D. Krug, M. T. M. Koper, Combined effects of electrode morphology and electrolyte composition on single H2 gas bubble detachment during hydrogen evolution reaction, Nanoscale 17 (2025) 10020-10034. https://doi.org/10.1039/d5nr00234f DOI: https://doi.org/10.1039/D5NR00234F
[84] S. Zhang, X. Cao, B. Wang, J. Wei, L. Zhou, J. Han, J. Yun, Application of high-frequency pulsed electrolysis technology in enhancing hydrogen production efficiency and energy saving potential analysis, International Journal of Hydrogen Energy 109 (2025) 684-693. https://doi.org/10.1016/j.ijhydene.2025.02.158 DOI: https://doi.org/10.1016/j.ijhydene.2025.02.158
[85] L. P. Ferraz, E. K. Silva, Unraveling the thermal effects of high-intensity ultrasound: A practical guide to acoustic power determination and heat management, ACS Omega 10 (2025) 20277-20285. https://doi.org/10.1021/acsomega.4c11498 DOI: https://doi.org/10.1021/acsomega.4c11498
[86] S. Puteanus, T. Miličić, U. Feldmann, T. Vidaković-Koch, Efficiency improvement by pulsed water electrolysis: An unjustified hope, International Journal of Hydrogen Energy 113 (2025) 478-484. https://doi.org/10.1016/j.ijhydene.2025.02.348 DOI: https://doi.org/10.1016/j.ijhydene.2025.02.348
[87] S. Therre, M. Fournelle, S. Tretbar, Optimization of 3D passive acoustic mapping image metrics: Impact of sensor geometry and beamforming approach, Sensors 24 (2024) 1868. https://doi.org/10.3390/s24061868 DOI: https://doi.org/10.3390/s24061868
[88] N. Caso, K. Patel, T. Sun, Passive acoustic dynamic differentiation and mapping: A time-domain passive cavitation localization and classification approach, bioRxiv (2025). https://doi.org/10.1101/2025.04.08.647829 DOI: https://doi.org/10.1101/2025.04.08.647829
[89] C. M. Huber, N. Dorsch, H. Ermert, M. Vossiek, I. Ullmann, S. Lyer, Passive cavitation mapping for biomedical applications using higher order delay multiply and sum beamformer with linear complexity, Ultrasonics 153 (2025) 107653. https://doi.org/10.1016/j.ultras.2025.107653 DOI: https://doi.org/10.1016/j.ultras.2025.107653
[90] Y. Zhu, G. Zhang, Q. Zhang, L. Luo, B. Ding, X. Guo, D. Zhang, J. Tu, Real-time passive cavitation mapping and B-mode fusion imaging via hybrid adaptive beamformer with modified diagnostic ultrasound platform, Ultrasonics 142 (2024) 107375. https://doi.org/10.1016/j.ultras.2024.107375 DOI: https://doi.org/10.1016/j.ultras.2024.107375
[91] H. Geng, T. Chen, J. Chen, B. Huang, G. Wang, Temperature effects on single cavitation bubble dynamics under the free field condition: Experimental and theoretical investigations on water, Ultrasonics Sonochemistry 120 (2025) 107520. https://doi.org/10.1016/j.ultsonch.2025.107520 DOI: https://doi.org/10.1016/j.ultsonch.2025.107520
[92] Ö. Akay, A. Bashkatov, E. Coy, K. Eckert, K. E. Einarsrud, A. Friedrich, B. Kimmel, S. Loos, G. Mutschke, L. Röntzsch, M. D. Symes, X. Yang, K. Brinkert, Electrolysis in reduced gravitational environments: Current research perspectives and future applications, NPJ Microgravity 8 (2022) 56. https://doi.org/10.1038/S41526-022-00239-Y DOI: https://doi.org/10.1038/s41526-022-00239-y
[93] Ö. Akay, M. Monfort-Castillo, T. St Francis, J. Becker, S. Saravanabavan, Á. Romero-Calvo, K. Brinkert, Magnetically induced convection enhances water electrolysis in microgravity, Nature Chemistry 17 (2025) 1673–1679. https://doi.org/10.1038/S41557-025-01890-0. DOI: https://doi.org/10.1038/s41557-025-01890-0
[94] P. Vensaus, Y. Liang, J. P. Ansermet, G. J. A. A. Soler-Illia, M. Lingenfelder, Enhancement of electrocatalysis through magnetic field effects on mass transport, Nature Communications 15 (2024) 2867. https://doi.org/10.1038/s41467-024-46980-8 DOI: https://doi.org/10.1038/s41467-024-46980-8
[95] F. Rocha, C. Georgiadis, K. Van Droogenbroek, R. Delmelle, X. Pinon, G. Pyka, G. Kerckhofs, F. Egert, F. Razmjooei, S. A. Ansar, S. Mitsushima, J. Proost, Proton exchange membrane-like alkaline water electrolysis using flow-engineered three-dimensional electrodes, Nature Communications 15 (2024) 7444. https://doi.org/10.1038/s41467-024-51704-z DOI: https://doi.org/10.1038/s41467-024-51704-z
[96] L. Wu, Z. Pan, S. Yuan, X. Shi, Y. Liu, F. Liu, X. Yan, L. An, A dual-layer flow field design capable of enhancing bubble self-pumping and its application in water electrolyzer, Chemical Engineering Journal 488 (2024) 151000. https://doi.org/10.1016/j.cej.2024.151000 DOI: https://doi.org/10.1016/j.cej.2024.151000
[97] J. Bleeker, C. van Kasteren, J. R. van Ommen, D. A. Vermaas, Gas bubble removal from a zero-gap alkaline electrolyser with a pressure swing and why foam electrodes might not be suitable at high current densities, International Journal of Hydrogen Energy 57 (2024) 1398-1407. https://doi.org/10.1016/j.ijhydene.2024.01.147 DOI: https://doi.org/10.1016/j.ijhydene.2024.01.147
[98] C. Zhang, Z. Xu, N. Han, Y. Tian, T. Kallio, C. Yu, L. Jiang, Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer, Science Advances 9 (2023) eadd6978. https://doi.org/10.1126/sciadv.add6978 DOI: https://doi.org/10.1126/sciadv.add6978
Downloads
Published
Issue
Section
License
Copyright (c) 2026 ChenHongWen Zeng, Yew Heng Teoh , Heoy Geok How, Mohamad Yusof Idroas, Thanh Danh Le

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2023/TK08/USM/02/10


