Electrochemical and microbial treatment of bromophenol blue dye in aqueous solution
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1882Keywords:
Wastewater treatment, dye removal efficiency, quantum chemical calculations, graphite electrodes, dye pollution, environmental remediation
Abstract
Bromophenol blue (BB) is an important triphenylmethane derivative widely used in research and industry as a dye or colorant for silk, leather, and drugs. BB has a high proclivity for water contamination because of its high solubility and stability, causing damage to living organisms even in low quantities. This study assessed the feasibility of electrochemical and biological for the decolorization of BB using graphite-copper electrode and indigenous microorganisms, respectively. It was found that effectiveness of electrochemical treatment improves with higher electrolysis time, current density, and electrolyte concentration, drops with rising pH, and shows a nonlinear pattern with temperature. The microbial strains identified as Acinetobacter baumaniu, Serratia marcescens, Aspergillus niger, Aspergillus flavus, Bacillus megaterium, Rhizopus stolonifer, and Bacillus subtilis performed poorly, irrespective of the dye/mineral salt ratio. The electrochemical technique was much more effective for decolorizing bromophenol blue dye-contaminated water. The computational results showed clearly that bromine atoms are the most susceptible sites for attack by oxidizing species and, thus, the onset of BB-decolorization.
Downloads
References
K. H. Kazm, S. T. Najim, Study Kinetic Reaction and Removal of Indigo Carmine Dye in Aqueous Solutions by Direct Electrochemical Oxidation, IOP Conference Series: Earth and Environmental Science 1002 (2022) 012005. https://doi.org/10.1088/1755-1315/1002/1/012005
H. Mazaheri, M. Ghaedi, A. Asfaram, S. Hajati, Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: Using ultrasound power and optimization by central composite design, Journal of Molecular Liquids 219 (2016) 667–676. https://doi.org/10.1016/j.molliq.2016.03.050
H. Khan, A. K. Khalil, A. Khan, K. Saeed, N. Ali, Photocatalytic degradation of bromophenol blue in aqueous medium using chitosan conjugated magnetic nanoparticles, Korean Journal of Chemical Engineering 33 (2016) 2802–2807. https://doi.org/10.1007/s11814-016-0238-8
L. Zhang, F. Wei, Q. Zhao, X. Chen, Y. Yao, Electrochemical degradation of bromophenol blue on porous PbO2–ZrO2 composite electrodes, Research on Chemical Intermediates 46 (2019) 1389–1404. https://doi.org/10.1007/s11164-019-04040-7
M. Ghaedi, A. M. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M. Rajabi, Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree, Journal of Industrial and Engineering Chemistry 20 (2014) 1793–1803. https://doi.org/10.1016/j.jiec.2013.08.033
M. Rashad, H.A. Al-Aoh, Promising adsorption studies of bromophenol blue using copper oxide nanoparticles, Desalination and Water Treatment 139 (2019) 360-368. https://doi.org/10.5004/dwt.2019.23296
N. H. Jawad, S. T. Najim, Removal of Methylene Blue by Direct Electrochemical Oxidation Method Using a Graphite Anode, IOP Conference Series: Material Science and Engineering 454 (2018) 012023. https://doi.org/10.1088/1757-899X/454/1/012023
F. Rong, Z. Ding, C. Zhang, Study of Electrochemical Degradation of Bromophenol Blue at Boron-doped Diamond Electrode by Using Factorial Design Analysis, Matec web Conferences 25(2015) 02012. https://doi.org/10.1051/matecconf/20152502012
C. Zhang, Z. He, J. Wu, and D. Fu, The Peculiar Roles of Sulfate Electrolytes in BDD Anode Cells, Journal of The Electrochemical Society 162 (2015) E85–E89. https://doi.org/10.1149/2.0361508jes
Q. Zhao, F. Wei, L. Zhang, Y. Yang, S. Lv, Y. Yao, Electrochemical oxidation treatment of coal tar wastewater with lead dioxide anodes, Water Science & Technology 80 (2019) 836–845. https://doi.org/10.2166/wst.2019.323
O. M. Rodríguez-Narváez, A. R. Picos, N. Bravo-Yumi, M. Pacheco-Alvarez, C. A. Martínez-Huitle, J. M. Peralta-Hernández, Electrochemical oxidation technology to treat textile wastewaters, Current Opinion in Electrochemistry 29 (2021) 100806. https://doi.org/10.1016/j.coelec.2021.100806
Z. Hu, J. Cai, G. Song, Y. Tian, M. Zhou, Anodic oxidation of organic pollutants: Anode fabrication, process hybrid and environmental applications, Current Opinion in Electrochemistry 26 (2021) 100659. https://doi.org/10.1016/j.coelec.2020.100659
T. Fan, W. Deng, X. Feng, F. Pan, Y. Li, An integrated electrocoagulation – Electrocatalysis water treatment process using stainless steel cathodes coated with ultrathin TiO2 nanofilms, Chemosphere 254 (2020) 126776. https://doi.org/10.1016/j.chemosphere.2020.126776
Z. Zakaria, M. R. Othman, S. Z. Hasan, W. Y. Wan Ahmad, Electrochemical degradation of reactive orange 16 by using charcoal-based metallic composite electrodes, Sains Malaysiana 48 (2019) 791–801. http://dx.doi.org/10.17576/jsm-2019-4804-11
K. Oguzie, E. Oguzie, S. Nwanonenyi, J. Edoziem, L. Vrsalović, Electrochemical decolorization of Disperse Blue-1 dye in aqueous solution, Environmental Engineering and Management Journal 20 (2021) 1467–1476.
N. H. Luan, Y.-T. Yang, C.-F. Chang, Electrochemical degradation of methylene blue accompanied with the reduction of CO2 by using carbon nanotubes grown on carbon fiber electrodes, Sustainable Environment Research 32 (2022) 13. https://doi.org/10.1186/s42834-022-00122-1
A. Y. Goren, Y. K. Recepoǧlu, Ö. Edebali˙, C. Sahin, M. Genisoglu, H. E. Okten, Electrochemical Degradation of Methylene Blue by a Flexible Graphite Electrode: Techno-Economic Evaluation, ACS Omega 7 (2022) 32640–32652. https://doi.org/10.1021/acsomega.2c04304
R. Shivangi, S. Richa, C. Subhash, S. Chandra, Microbial degradation of synthetic textile dyes: A cost effective and eco-friendly approach, African Journal of Microbiology Research 7 (2013) 2983–2989. https://doi.org/10.5897/AJMR12.1804
R. Potadar, B. Kulkkani, and S. Panicker, Study On Decolorization of Bromophemol Blue and Crystal Violet By Isolates Psedomonas Sp and Salmonella Sp, International Journal of Recent Scientific Research 8 (2017) 17628–17633. https://www.researchgate.net/publication/319153096_Study_on_Decolorization_of_Bromophenol_Blue_and_Crystal_Violet_by_Isolates_Pseudomonas_Sp_and_Salmonella_Sp
D. Chmelová, M. Ondrejovič, Purification and characterization of extracellular laccase produced by Ceriporiopsis subvermispora and decolorization of triphenylmethane dyes, Journal of Basic Microbiology 56 (2016) 1173–1182. https://doi.org/10.1002/jobm.201600152
L. Singh, V. P. Singh, Biodegradation of Textile Dyes, Bromophenol Blue and Congo red by Fungus Aspergillus Flavus, Environment and We, An International Journal of Science & Technology 5 (2010) 235–242. https://www.researchgate.net/publication/268298560
M. Cheesbrough, District Laboratory Practice in Tropical Countries 1, Second edition, Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511581304
J. Holt, P. Krieg, H. Sneath, J. Staley, S. Williams, Bergey’s Manual of Determinative Bacteriology, 2013.
P. Verma, D. Madamwar, Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens World Journal of Microbiology and Biotechnology 19 (2003) 615–618. https://doi.org/10.1023/A:1025115801331
Y. Kang, X. Xu, H. Pan, J. Tian, W. Tang, S. Liu, Decolorization of mordant yellow 1 using Aspergillus sp. Ts-A cgmcc 12964 by biosorption and biodegradation, Bioengineered 9 (2018) 222–232. https://doi.org/10.1080/21655979.2018.1472465
A. Kumar, J. Chopra, S. K. Singh, A. Khan, R. N. Singh, Biodegradation of azo dyes by Bacillus subtilis ‘RA29’, Der Pharmcia Lettre 7 (2015) 234–238.
B. Joshi, K. Kabariya, S. Nakrani, A. Khan, F.M. Parabia, H.V. Doshi, M. Chandra Thakur Biodegradation of Turquoise Blue Dye by Bacillus Megaterium Isolated from Industrial Effluent, American Journal of Environmental Protection 1 (2013) 41–46. https://doi.org/10.12691/env-1-2-5
S. V. Anand, M. Misra, Decolourization of industrial dyes using Ascomycetes and mucor species, International Journal of Pharma and Bio Science 8 (2017) 285-291. http://doi.org/10.22376/ijpbs.2017.8.2.b285-291
X. -A. Ning, C. Yang, Y. Wang, Z. Yang, J. Wang, R. Li, Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226, Biotechnology and Bioprocess Engineering 19 (2014) 687-695. https://doi.org/10.1007/s12257-013-0729-y
H. Ali, Biodegradation of synthetic dyes - A review, Water, Air and Soil Pollution 213 (2010) 251–273. https://doi.org/10.1007/s11270-010-0382-4
Z. Zainal, C. Y. Lee, M. Z. Hussein, A. Kassim, N. A. Yusof, Effect of supporting electrolytes in electrochemically-assisted photodegradation of an azo dye, Journal of Photochemistry and Photobiology A: Chemistry 172 (2005) 316–321. https://doi.org/10.1016/j.jphotochem.2004.12.021
S. Aquino Neto, A. R. de Andrade, Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect, Electrochimica Acta 54 (2009) 2039–2045. https://doi.org/10.1016/j.electacta.2008.07.019
Q. Dai, H. Shen, Y. Xia, F. Chen, J. Wang, J. Chen, The application of a novel Ti/SnO2-Sb2O3/PTFE-La-Ce-β-PbO2 anode on the degradation of cationic gold yellow X-GL in sono-electrochemical oxidation system, Separation and Purification Technology 104 (2013) 9–16. https://doi.org/10.1016/j.seppur.2012.10.043
M. Reza, A. Dargahi, A. Shabanloo, Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters , degradation pathway and improving the biodegradability of textile wastewater, Arabian Journal of Chemistry 13 (2020) 6847–6864. https://doi.org/10.1016/j.arabjc.2020.06.038
M. Jović, D.Stankovic, Study of the electrochemical oxidation of reactive textile dyes using platinum electrode, International Journal of Electrochemical Science 8 (2013) 168–183.
R. El Brychy, M.M Rguiti, N. Rhazzane, M.D. Mellaoui, K. Abbiche, M. Abali, L. Bazzi, M. Hilali, S. El Issami, K.Groenen-Serrano, H. Zejli, Electrochemical degradation of crystal violet using Ti/Pt/SnO2 electrode, Applied Science 11 (2021) 8401. https://doi.org/10.3390/app11188401
A. Cerda-Monje, R. Ormazábal-Toledo, C. Cárdenas, P. Fuentealba, R. Contreras, Regional electrophilic and nucleophilic Fukui functions efficiently highlight the lewis acidic/basic regions in ionic liquids, The Journal of Physical Chemistry B 118 (2014) 3696–3701. https://doi.org/10.1021/jp5009994
J. Hong, N. Ta, S.-g. Yang, Y.-z. Liu, C. Sun, Microwave-assisted direct photolysis of bromophenol blue using electrodeless discharge lamps, Desalination 214 (2007) 62–69. https://doi.org/10.1016/j.desal.2006.09.026
Q. Cong, M. Ren, T. Zhang, F. Cheng, J. Qu, Efficient photoelectrocatalytic performance of beta-cyclodextrin/graphene composite and effect of Cl− in water: degradation for bromophenol blue as a case study, RSC Advances 11 (2021) 29896–29905. https://doi.org/10.1039/D1RA04533D
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
World Bank Group
Grant numbers P169064, IDA No 6510-NG