Zeolite based gas-diffusion electrodes for secondary metal air batteries

Authors

  • Miglena Slavova Institute of Electrochemistry and Energy Systems Todor Kableshkov University of Transport
  • Elena Mihaylova-Dimitrova Institute of Electrochemistry and Energy Systems
  • Emiliya Mladenova Institute of Electrochemistry and Energy Systems
  • Borislav Abrashev Institute of Electrochemistry and Energy Systems
  • Blagoy Burdin Institute of Electrochemistry and Energy Systems
  • Daria Vladikova Institute of Electrochemistry and Energy Systems

DOI:

https://doi.org/10.5599/jese.763

Keywords:

batteries, gas-diffusion layer, zeolite, polarization, cycling

Abstract

In recent years, secondary metal air batteries have received considerable attention as promising technology for energy storage in combination with renewable energy sources. The oxidation of carbon in conventional gas-diffusion electrodes reduces the life of the secondary metal-air batteries. Replacement of the carbon-based material with zeolite is a possible solution for overcoming this problem which is the aim of this work.

Zeolite is a natural or synthetic porous material which provides the necessary gas permeability. The required hydrophobicity of the electrodes is ensured by mixing the zeolite with an appropriate amount of polytetrafluoroethylene following a specially developed procedure.

The experiments are performed in a home designed test cell which ensures measurements in both half-cell and full cell configuration. In this study the testing is carried out in 3-electrode homemade half-cell configuration with hydrogen reference electrode. The cell was subjected to cycling at charge/discharge current ± 2 mA/cm2 respectively.

The obtained results show that the replacement of carbon with zeolite in the gas diffusion layer is a promising direction for optimization of the gas diffusion electrode.

Downloads

Download data is not yet available.

References

Accelerating Clean Energy Innovation COM (2016) 763 final, http://ec.europa.eu/energy/sites/ener/files/documents/1_en_act_part1_v6_0.pdf.

A. Kaisheva, in: Portable and Emergency Energy Sources, Z. Stoynov and D. Vladikova (Eds.), Marin Drinov Academic Publishing House, Sofia, Bulgaria, 2006, p. 301-328

European Strategy for Low-Emission Mobility COM (2016) 501 final; https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-501-EN-F1-1.PDF.

P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, H. Pang, Journal of Material Chemistry A 5 (2017) 7651-7666.

J. Fu, ZP. Cano, MG. Park, A. Yu, M. Fowler, Z. Chen, Advanced Materials 29(7) (2016) DOI: 10.1002/adma.201604685.

EU funded H2020 project „Zinc-Air Secondary innovative nanotech based batteries for efficient energy storage”– ZAS (GA 646186) (http://sintef.no/projectweb/zas/).

J-S. Lee, ST. Kim, R. Cao, N-S. Choi, M. Liu, KT. Lee, J. Cho, Advanced Energy Materials 1 (2011) 34–50, DOI: 10.1002/aenm.201000010.

Z. Stoynov, D. Vladikova (Eds.), Portable and Emergency Energy Sources, Marin Drinov Academic Publishing House, Sofia, Bulgaria, 2006.

G. Zhang, Journal of Power Sources 163 (2006) 591–597, doi:10.1016/j.jpowsour.2006.09.034.

S. Velraja, J. Zhua, 232nd ECS Meeting, Carbon-Free NiCo2O4-Based Bifunctional Air Electrode for Rechargeable Metal-Air Batteries: Effect of the Spinel Crystallite Size, National Harbor, Maryland, USA, 2017, MA2017-02.

M. Kar, B. Winther-Jensen, M. Forsyth, DR. MacFarlane, Physical Chemistry Chemical Physics, 15 (2013) 7191-7197, DOI: 10.1039/C3CP51102B.

S. Müller, F. Holzer, O. Haas, Journal of Applied Electrochemistry 28 (1998) 895‐898.

O. Haas, JV. Wesemael, in: Encyclopedia of Electrochemical Power Sources, J Garche, Elsevier Science, ISBN: 978-0-444-52745-5, 2009, p. 384‐392.

B. Dunn, H. Kamath, J-M. Tarascon, Science 334 (2011) 928–935.

V. Caramia, B. Bozzin, Materials for Renewable and Sustainable Energy 3 (2014) 28, DOI 10.1007/s40243-014-0028-3.

B. Abrashev, D. Uzun, H. Hristov, D. Nicheva, K. Petrov, Advanced Natural Science: Theory & Applications 4 (2015) 65.

E. Mladenova, D. Vladikova, Z. Stoynov, A. Chesnaud, A. Thorel, M. Krapchanska, Bulgarian Chemical Communications 45(3) (2013) 366-370.

Downloads

Published

09-03-2020

How to Cite

Slavova, M., Mihaylova-Dimitrova, E., Mladenova, E., Abrashev, B., Burdin, B., & Vladikova, D. (2020). Zeolite based gas-diffusion electrodes for secondary metal air batteries. Journal of Electrochemical Science and Engineering, 10(2), 229–234. https://doi.org/10.5599/jese.763

Issue

Section

7th RSE SEE & 8th Kurt Schwabe symposium Special Issue