One-pot synthesis of crystalline structure: Nickel-iron phosphide and selenide for hydrogen production in alkaline water splitting
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1721Keywords:
Electrocatalysis, hydrogen evolution reaction, transition metal phosphide, transition metal selenideAbstract
Electrocatalytically active nanocomposites play a vital role in energy generation, conversion, and storage technologies. Transition metal-based catalysts such as nickel and iron and their pnictide (phosphide), and chalcogenide (selenide) compounds exhibit good activity for hydrogen evolution reaction (HER) in the alkaline environment. In this study, transition metals-based catalysts (Ni-P-Se, Fe-P-Se, and Ni-Fe-P-Se) solutions were prepared using a simple one-pot method. Prepared solutions were deposited on Ni foam, and different characterization techniques were used to determine the composition, structure, and morphology of as-prepared catalysts. Furthermore, it was found that Ni-Fe-P-Se as a cathode material showed better HER performance compared to other investigated materials with the overpotential value of 316 mV at 10 mA cm-2 current density and 89 mV dec-1 Tafel slope value. The stability tests of the as-prepared catalyst confirmed that the synergistic effect between various elements enhances the electrocatalytic performance for up to 24 hours, providing a fair, stable nature of Ni-Fe-P-Se based sample.
Downloads
References
H. El Alami, J. Creus, X. Feaugas. Thermodynamic parameters evolution versus plastic strain during HER on nickel in sulphuric acid, Electrochimica Acta 52(12) (2007) 4004-4014. https://doi.org/10.1016/j.electacta.2006.11.029
A. Hanan, M. N. Lakhan, D. Shu, A. Hussain, M. Ahmed, I. A. Soomro, V. Kumar, D. Cao. An efficient and durable bifunctional electrocatalyst based on PdO and Co2FeO4 for HER and OER, International Journal of Hydrogen Energy 48(51) (2023) 19494-19508. https://doi.org/10.1016/j.ijhydene.2023.02.049
C. Hu, C. Lv, S. Liu, Y. Shi, J. Song, Z. Zhang, J. Cai, A. Watanabe, Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction, Catalysts 10(2) (2020) 188.
https://doi.org/10.3390/catal10020188
A. G. Maher, M. Liu, D. G. Nocera, Ligand Noninnocence in Nickel Porphyrins: Nickel Isobacteriochlorin Formation under Hydrogen Evolution Conditions, Inorganic Chemistry 58 (2019) 7958-7968. https://doi.org/10.1021/acs.inorgchem.9b00717
A. Hanan, M. Ahmed, M.N. Lakhan, A.H. Shar, D. Cao, A. Asif, A. Ali, M. Gul, Novel rGO@Fe3O4 nanostructures: An active electrocatalyst for hydrogen evolution reaction in alkaline media Journal of the Indian Chemical Society 99(5) (2022) 100442. https://doi.org/10.1016/j.jics.2022.100442
Z. H. Ibupoto, A. Tahira, A.A. Shah, U. Aftab, M.Y. Solangi, J.A. Leghari, A.H. Samoon, A.L. Bhatti, M.A. Bhatti, R. Mazzaro, V. Morandi, M.I. Abro, A. Nafady, A.M. Al-Enizi, M. Emo, B. Vigolo, NiCo2O4 nanostructures loaded onto pencil graphite rod: An advanced composite material for oxygen evolution reaction, International Journal of Hydrogen Energy 47(10) (2022) 6650-6665. https://doi.org/10.1016/j.ijhydene.2021.12.024
U. Aftab, A. Tahira, A.H. Samo, M.I. Abro, M.M. Baloch, M. Kumar, Sirajuddin, Z.H. Ibupoto, Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction, International Journal of Hydrogen Energy 45(27) (2020) 13805-13813. https://doi.org/10.1016/j.ijhydene.2020.03.131
B. Pierozynski, T. Mikolajczyk, I.M. Kowalski, Hydrogen evolution at catalytically-modified nickel foam in alkaline solution, Journal of Power Sources 271 (2014) 231-238. https://doi.org/10.1016/j.jpowsour.2014.07.188
F. Song, W. Li, G. Han, Y. Sun, Electropolymerization of Aniline on Nickel-Based Electrocatalysts Substantially Enhances Their Performance for Hydrogen Evolution, ACS Applied Energy Materials 1(1) (2018) 3-8. https://doi.org/10.1021/acsaem.7b00005
A. Hanan, M.Y. Solangi, A. Jaleel laghari, A.A. Shah, U. Aftab, Z.A. Ibupoto, M.I. Abro, M.N. Lakhan, I.A. Soomro, E.A. Dawi, A. Al Karim, H. Ismail, E. Mustafa, B. Vigolo, A. Tahira, Z.H. Ibupoto, PdO@CoSe2 composites: efficient electrocatalysts for water oxidation in alkaline media RSC Advances 13(1) (2023) 743-755. http://doi.org/10.1039/D2RA07340D
L. Wan, J. Zhang, Y. Chen, C. Zhong, W. Hu, Y. Deng, Varied hydrogen evolution reaction properties of nickel phosphide nanoparticles with different compositions in acidic and alkaline conditions, Journal of Materials Science 52 (2017) 804-814. http://doi.org/10.1007/s10853-016-0377-7
F. Xiao, L. Li, W. Cui, Y. Zhang, C. Zhan, W. Xiao, Aligned porous nickel electrodes fabricated via ice templating with submicron particles for hydrogen evolution in alkaline water electrolysis, Journal of Power Sources 556 (2023) 232441. http://doi.org/10.1016/j.jpowsour.2022.232441
W. Zhang, W. Li, Y. Li, S. Peng, Z. Xu, One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution, Catalysis Today 335 (2019) 326-332. http://doi.org/10.1016/j.cattod.2018.12.016
M. Ahmed, M.N. Lakhan, Y. Tian, A.H. Shar, J. Yu, I. Ali, J. Liu, J. Wang, Fe (Pb)-P-Se nanocubes as her electrocatalysts for overall efficient water-splitting, Digest Journal of Nanomaterials and Biostructures 15(1) (2020) 207-215. https://doi.org/10.15251/DJNB.2020.151.207
Y. Pei, Y. Yang, F. Zhang, P. Dong, R. Baines, Y. Ge, H. Chu, P.M. Ajayan, J. Shen, M. Ye, Controlled Electrodeposition Synthesis of Co–Ni–P Film as a Flexible and Inexpensive Electrode for Efficient Overall Water Splitting, ACS Applied Materials & Interfaces 9(37) (2017) 31887-31896. https://doi.org/10.1021/acsami.7b09282
H. Xu, J. Zhu, P. Wang, D. Chen, C. Zhang, M. Xiao, Q. Ma, H. Bai, R. Qin, J. Ma, S. Mu, Fe–Co–P multi-heterostructure arrays for efficient electrocatalytic water splitting, Journal of Materials Chemistry A 9(43) (2021) 24677-24685. https://doi.org/10.1039/D1TA06603J
X. Xing, C. Wu, G. Yang, T. Tong, Y. Wang, D. Wang, F.C. Robles Hernandez, Z. Ren, Z. Wang, J. Bao, FeSe2/CoSe nanosheets for efficient overall water splitting under low cell voltages Materials Today Chemistry 26 (2022) 101110. https://doi.org/10.1016/j.mtchem.2022.101110
I.H. Kwak, H.S. Im, D.M. Jang, Y.W. Kim, K. Park, Y.R. Lim, E.H. Cha, J. Park, CoSe2 and NiSe2 Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting, ACS Applied Materials & Interfaces 8(8) (2016) 5327-5334. https://doi.org/10.1021/acsami.5b12093
A.Hanan Samo, U. Aftab, M. Yameen, A.J. Laghari, M. Ahmed, M.N. Lakhan, A.H. Shar, A. Ali, A. Ali, A magnesium doped cobalt-oxide composite for active oxygen evolution reaction, Journal of Applied and Emerging Sciences 11(02) (2021) 210-216. https://doi.org/10.36785/JAES.112519
A. Hanan, D. Shu, U. Aftab, D. Cao, A.J. Laghari, M.Y. Solangi, M.I. Abro, A. Nafady, B. Vigolo, A. Tahira, and Z.H. Ibupoto, Co2FeO4@rGO composite: Towards trifunctional water splitting in alkaline media, International Journal of Hydrogen Energy 47(80) (2022) 33919-33937. https://doi.org/10.1016/j.ijhydene.2022.07.269
D. Han, G. Du, Y. Wang, L. Jia, W. Zhao, Q. Su, S. Ding, M. Zhang, B. Xu, Chemical Energy-Driven Lithiation Preparation of Defect-Rich Transition Metal Nanostructures for Electrocatalytic Hydrogen Evolution, Small 18(35) (2022) 2202779. https://doi.org/10.1002/smll.202202779
Z. Zhu, H. Yin, C.-T. He, M. Al-Mamun, P. Liu, L. Jiang, Y. Zhao, Y. Wang, H.-G. Yang, Z. Tang, D. Wang, X.-M. Chen, H. Zhao, Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity, Advanced Materials 30(28) (2018) 1801171. https://doi.org/10.1002/adma.201801171
M.J. Gomez, E.A. Franceschini, G.I. Lacconi, Ni and NixCoyAlloys Electrodeposited on Stainless Steel AISI 316L for Hydrogen Evolution Reaction, Electrocatalysis 9 (2018) 459-470. https://doi.org/10.1007/s12678-018-0463-5
M.A. Ruiz Fresneda, J. Delgado Martín, J. Gómez Bolívar, M.V. Fernández Cantos, G. Bosch-Estévez, M.F. Martínez Moreno, M.L. Merroun, Green synthesis and biotransformation of amorphous Se nanospheres to trigonal 1D Se nanostructures: impact on Se mobility within the concept of radioactive waste disposal, Environmental Science: Nano 5 (2018) 2103-2116. https://doi.org/10.1039/C8EN00221E
J.T. Richardson, R. Scates, M.V. Twigg, X-ray diffraction study of nickel oxide reduction by hydrogen, Applied Catalysis A: General 246(1) (2003) 137-150. https://doi.org/10.1016/S0926-860X(02)00669-5
H. Wang, X. Kou, J. Zhang, J. Li, Large scale synthesis and characterization of Ni nanoparticles by solution reduction method, Bulletin of Materials Science 31 (2008) 97-100. https://doi.org/10.1007/s12034-008-0017-1
K. He, F.-X. Ma, C.-Y. Xu, J. Cumings, Mapping magnetic fields of Fe3O4 nanosphere assemblies by electron holography, Journal of Applied Physics 113(17) (2013) 17B528. https://doi.org/10.1063/1.4798500
R.S. Sahu, R.-a. Doong, Functionalized Fe/Ni@g-C3N4 nanostructures for enhanced trichloroethylene dechlorination and successive oxygen reduction reaction activity Environmental Science: Nano 7 (2020) 3469-3481. https://doi.org/10.1039/D0EN00450B
X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang, B. Chen, MOF-Derived Formation of Ni2P-CoP Bimetallic Phosphides with Strong Interfacial Effect toward Electrocatalytic Water Splitting, ACS Applied Materials & Interfaces 9(27) (2017) 23222-23229. https://doi.org/10.1021/acsami.7b06152
H. Zhang, H. Tang, Q. Weng, Q. Wei, M. Duan, X. Bo, F. Fu, L. Zan. Engineering heterostructure of bimetallic nickel-silver sulfide as an efficient electrocatalyst for overall water splitting in alkaline media, Journal of Solid State Chemistry 316 (2022) 123556. https://doi.org/10.1016/j.jssc.2022.123556
L.P. Hao, A. Hanan, R. Walvekar, M. Khalid, F. Bibi, W.Y. Wong, C. Prakash, Synergistic Integration of MXene and Metal-Organic Frameworks for Enhanced Electrocatalytic Hydrogen Evolution in an Alkaline Environment, Catalysts 13(5) (2023) 802. https://doi.org/10.3390/catal13050802
H. Zhang, S. Geng, M. Ouyang, H. Yadegari, F. Xie, D.J. Riley. A Self-Reconstructed Bifunctional Electrocatalyst of Pseudo-Amorphous Nickel Carbide @ Iron Oxide Network for Seawater Splitting, Advanced Science 9(15) (2022) 2200146. https://doi.org/10.1002/advs.202200146
D. Liu, D. Li, D. Yang, Size-dependent magnetic properties of branchlike nickel oxide nanocrystals, AIP Advances 7 (2017) 015028. https://doi.org/10.1063/1.4974307
M.Y. Solangi, A.H. Samo, A.J. Laghari, U. Aftab, M.I. Abro, M.I. Irfan, MnO2@Co3O4 nanocomposite based electrocatalyst for effective oxygen evolution reaction, Sukkur IBA Journal of Emerging Technologies (SJET) 5 (2022) 32-40. https://doi.org/10.30537/sjet.v5i1.958
Y. Hong, C.H. Choi, S.-I. Choi, Catalytic Surface Specificity of Ni(OH)2-Decorated Pt Nanocubes for the Hydrogen Evolution Reaction in an Alkaline Electrolyte, ChemSusChem 12(17) (2019) 4021-4028. https://doi.org/10.1002/cssc.201901539
A. Samo, U. Aftab, D. Cao, M. Ahmed, M. Lakhan, V. Kumar, A. Asif, A. Ali, Schematic synthesis of cobalt-oxide (Co3O4) supported cobalt-sulfide (CoS) composite for oxygen evolution reaction, Digest Journal of Nanomaterials and Biostructures 17(1) (2022) 109-120. https://doi.org/10.15251/DJNB.2022.171.109
A. Hanan, A.J. Laghari, M.Y. Solangi, U. Aftab, M.I. Abro, D. Cao, M. Ahmed, M.N. Lakhan, A. Ali, and A. Asif, CdO/Co3O4 Nanocomposite as an Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline Media, International Journal of Engineering Science Technologies 6(1) (2022) 1-10. https://doi.org/10.29121/IJOEST.v6.i1.2022.259
A.J. Laghari, U. Aftab, A. Tahira, A.A. Shah, A. Gradone, M.Y. Solangi, A.H. Samo, M. kumar, M.I. Abro, M.w. Akhtar, R. Mazzaro, V. Morandi, A.M. Alotaibi, A. Nafady, A. Infantes-Molina, Z.H. Ibupoto, MgO as promoter for electrocatalytic activities of Co3O4–MgO composite via abundant oxygen vacancies and Co2+ ions towards oxygen evolution reaction International Journal of Hydrogen Energy 48 (2023) 12672-12682. https://doi.org/10.1016/j.ijhydene.2022.04.169
S. Balu, A. Hanan, H. Venkatesvaran, S.-W. Chen, T.C.-K. Yang, M.J.C. Khalid, Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review, Catalysts 13(2) (2023) 393. https://doi.org/10.3390/catal13020393
R.R. Raja Sulaiman, A. Hanan, W.Y. Wong, R.M. Yunus, K.S. Loh, R. Walvekar, V. Chaudhary, M.J.C. Khalid, Structurally Modified MXenes-Based Catalysts for Application in Hydrogen Evolution Reaction: A Review, Catalysts 12(12) (2022) 1576. https://doi.org/10.3390/catal12121576
D. Escalera-López, R. Griffin, M. Isaacs, K. Wilson, R.E. Palmer, N.V. Rees, Electrochemical sulfidation of WS2 nanoarrays: Strong dependence of hydrogen evolution activity on transition metal sulfide surface composition, Electrochemistry Communications 81 (2017) 106-111. https://doi.org/10.1016/j.elecom.2017.06.016
Y. Zhu, Q. Lin, Y. Zhong, H.A. Tahini, Z. Shao, H. Wang. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts, Energy & Environmental Science 13 (2020) 3361-3392. https://doi.org/10.1039/d0ee02485f
A. Ali, F. Long, P.K. Shen. Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts, Electrochemical Energy Reviews 5 (2022) 1. https://doi.org//10.1007/s41918-022-00136-8
J. Hu, C. Zhang, Y. Zhang, B. Yang, Q. Qi, M. Sun, F. Zi, M.K.H. Leung, B. Huang, Interface Modulation of MoS2/Metal Oxide Heterostructures for Efficient Hydrogen Evolution Electrocatalysis, Small 16 (2020) 2002212. https://doi.org/10.1002/smll.202002212
A.Q. Mugheri, A.A. Otho, A.A. Mugheri, Meritorious spatially on hierarchically Co3O4/MoS2 phase nanocomposite synergistically a high-efficient electrocatalyst for hydrogen evolution reaction performance: Recent advances & future perspectives, International Journal of Hydrogen Energy 46 (2021) 22707-22718. https://doi.org/10.1016/j.ijhydene.2021.04.122
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
National Natural Science Foundation of China
Grant numbers NSFC 51402065 and 51603053 -
Natural Science Foundation of Heilongjiang Province
Grant numbers LH2019E025 -
Harbin Applied Technology Research and Development Project
Grant numbers 3072019CF1003 -
National Key Research and Development Program of China
Grant numbers 2016YFE0202700;2016YFF0102601