Polyaniline prepared by Fe3O4 catalysed eco-friendly synthesis as electrocatalyst for efficient water electrolysis
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2438Keywords:
Hydrogen evolution reaction, oxygen evolution reaction, conducting polymers, transition metal oxides, electrocatalysis
Abstract
Preparing cost-effective and highly active catalysts for electrocatalytic hydrogen evolution reaction is crucial for developing hydrogen-based technologies. Hence, four conductive polyanilines, prepared by the environmentally-friendly approach using Fe3O4 nanoparticles/H2O2 as the catalyst/main oxidant system (PANI/Fe3O4), were investi¬gated for the first time as electrocatalysts for hydrogen evolution reaction (HER) in acidic media (0.1 M H2SO4) by using voltammetry and chronoamperometry. PANI/Fe3O4 electrodes exhibited Tafel slope values in the -171 to -246 mV dec-1 range depending on the synthesis conditions ‒ Fe3O4/aniline mass ratio and polymerization time. The sample PANI/Fe3O4-II(3) prepared with shorter reaction time and higher Fe3O4/aniline mass ratio showed the best electrocatalytic behaviour reflected in the lowest onset potential (-0.286 V), the lowest overpotential to reach a current density of -10 mA cm-2, the highest current density, the lowest HER activation energy (10 kJ mol-1), and the lowest charge-transfer resistance (5.3 Ω) under HER conditions. Materials were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray photo¬electron spectroscopy and electrochemical impedance spectroscopy, and differences in their electrocatalytic HER performance were explained by differences in their content of Fe3O4, surface and electrical properties. Moreover, the possibility of using PANI/Fe3O4-II(3) as HER electrocatalyst in a wider range of pH (i.e. in alkaline media as well) and as a bifunc¬tional electrocatalyst, i.e. for oxygen evolution reaction beside HER, was also examined.
Downloads
References
L. Huang, Y. Hou, Z. Yu, Z. Peng, L. Wang, J. Huang, B. Zhang, L. Qian, L. Wu, Z. Li, Pt/Fe-NF electrode with high double-layer capacitance for efficient hydrogen evolution reaction in alkaline media, International Journal of Hydrogen Energy 42(15) (2017) 9458-9466. https://doi.org/10.1016/j.ijhydene.2017.02.055
Y. Pan, M. Wen, Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction, International Journal of Hydrogen Energy 43(49) (2018) 22055-22063. https://doi.org/10.1016/j.ijhydene.2018.10.093
F. Wang, X. Yang, B. Dong, X. Yu, H. Xue, L. Feng, A FeP powder electrocatalyst for the hydrogen evolution reaction, Electrochemistry Communications 92 (2018) 33-38. https://doi.org/10.1016/j.elecom.2018.05.020
H. Wang, X. Wang, D. Yang, B. Zheng, Y. Chen, Co0.85Se hollow nanospheres anchored on N-doped graphene nanosheets as highly efficient, nonprecious electrocatalyst for hydrogen evolution reaction in both acid and alkaline media. Journal of Power Sources 400 (2018) 232-241. https://doi.org/10.1016/j.jpowsour.2018.08.027
X. Yue, C. Zhong, S. Huang, Y. Jin, C. He, Y. Chen, P.K. Shen, K0.4TaO2.4F0.6 Nanocubes as Highly Efficient Noble Metal-Free Electrocatalysts for Hydrogen Evolution Reaction in Acidic Media. Electrochimica Acta 245 (2017) 193-200. https://doi.org/10.1016/j.electacta.2017.05.145
J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy & Environmental Science 7 (2014) 1919-1923. https://doi.org/10.1039/c4ee00370e
P. Zhang, M. Wang, H. Chen, Y. Liang, J. Sun, L. Sun, A Cu-Based Nanoparticulate Film as Super-Active and Robust Catalyst Surpasses Pt for Electrochemical H2Production from Neutral and Weak Acidic Aqueous Solutions. Advanced Energy Materials 6 (2016) 1502319. https://doi.org/10.1002/aenm.201502319
A.L. Roy, A.M. Shaw, L. Rajagopal, C.H. Strohbehn, S.W. Arendt, K.L. Sauer, Use of minimal-text posters to improve the microbial status of leafy greens and food contact surfaces in foodservice sites serving older adults. Food Protection Trends 36 (2016) 125-132. https://doi.org/10.1021/ja403440e
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, Journal of the American Chemical Society 133 (2011) 7296-7299. 7299. https://doi.org/10.1021/ja201269b
M.B. Askari, P. Salarizadeh, M. seifi, S.M. Rozati, A. Beheshti-Marnani, H. Saeidfirozeh, MoCoFeS hybridized with reduced graphene oxide as a new electrocatalyst for hydrogen evolution reaction. Chemical Physics Letters 711 (2018) 32-36. https://doi.org/10.1016/j.cplett.2018.09.025
J. Ding, H. Yang, S. Zhang, Q. Liu, H. Cao, J. Luo, X. Liu, Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters‐based Materials. Small 18 (2022) 2204524. https://doi.org/10.1002/smll.202204524
J. Milikić, M. Vasić, L. Amaral, N. Cvjetićanin, D. Jugović, R. Hercigonja, B. Šljukić, NiA and NiX zeolites as bifunctional electrocatalysts for water splitting in alkaline media. International Journal of Hydrogen Energy 43 (2018) 18977-18991. https://doi.org/10.1016/j.ijhydene.2018.08.063
Z. Hao, S. Yang, J. Niu, Z. Fang, L. Liu, Q. Dong, S. Song, Y. Zhao, A bimetallic oxide Fe1.89Mo4.11O7 electrocatalyst with highly efficient hydrogen evolution reaction activity in alkaline and acidic media. Chemical Science 9 (2018) 5640-5645. https://doi.org/10.1039/c8sc01710g
L. Zhang, Y. Chen, P. Zhao, W. Luo, S. Chen, M. Shao, Fe3C Nanorods Encapsulated in N-Doped Carbon Nanotubes as Active Electrocatalysts for Hydrogen Evolution Reaction. Electrocatalysis 9 (2018) 264-270. https://doi.org/10.1007/s12678-017-0425-3
R. Atchudan, T.N.J. Immanuel Edison, S. Perumal, R. Vinodh, N. Muthuchamy, Y.R. Lee, One-pot synthesis of Fe3O4@graphite sheets as electrocatalyst for water electrolysis. Fuel 277 (2020) 118235. https://doi.org/10.1016/j.fuel.2020.118235
J. Wang, L. Ji, X. Teng, Y. Liu, L. Guo, Z. Chen, Decoupling half-reactions of electrolytic water splitting by integrating a polyaniline electrode. Journal of Materials Chemistry A 7 (2019) 13149-13153. https://doi.org/10.1039/c9ta03285a
M. Wang, L. Jiang, Q. Li, X. Zhou, PANI-modified Pt/Na4Ge9O20 with low Pt loadings: Efficient bifunctional electrocatalyst for oxygen reduction and hydrogen evolution. International Journal of Hydrogen Energy 44 (2019) 31062-31071. https://doi.org/10.1016/j.ijhydene.2019.10.021
G. Ćirić-Marjanović, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals 177 (2013) 1-47. https://doi.org/10.1016/j.synthmet.2013.06.004
G. Ćirić-Marjanović. Polyaniline Nanostructures, in: A. Eftekhari (Ed.), Nanostructured Conduct. Polym., John Wiley & Sons, Hoboken, New Jersey, 2010: pp. 19-98. https://doi.org/10.1002/9780470661338.ch2
T. Fujisaki, K. Kashima, S. Serrano-Luginbühl, R. Kissner, D. Bajuk-Bogdanović, M. Milojević-Rakić, G. Ćirić-Marjanović, S. Busato, E. Lizundia, P. Walde, Effect of template type on the preparation of the emeraldine salt form of polyaniline (PANI-ES) with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide. RSC Advances 9 (2019) 33080-33095. https://doi.org/10.1039/c9ra06168a
M.S. Biserčić, B. Marjanović, B.A. Zasońska, S. Stojadinović, G. Ćirić-Marjanović, Novel microporous composites of MOF-5 and polyaniline with high specific surface area. Synthetic Metals 262 (2020) 116348. https://doi.org/10.1016/j.synthmet.2020.116348
D. Wang, L. Yang, H. Liu, D. Cao, Polyaniline-coated Ru/Ni(OH)2 nanosheets for hydrogen evolution reaction over a wide pH range. Journal of Catalysis 375 (2019) 249-256. https://doi.org/10.1016/j.jcat.2019.06.008
Z. Duan, K. Deng, C. Li, M. Zhang, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, Polyaniline-coated mesoporous Rh films for nonacidic hydrogen evolution reaction. Chemical Engineering Journal 428 (2022) 132646. https://doi.org/10.1016/j.cej.2021.132646
B.B. Kamble, S.K. Jha, K.K. Sharma, S.S. Mali, C.K. Hong, S.N. Tayade, Redox active MoO3-Polyaniline hybrid composite for hydrogen evolution reaction and supercapacitor application. International Journal of Hydrogen Energy 48 (2023) 29058-29070. https://doi.org/10.1016/j.ijhydene.2023.04.089
H. Ashassi-Sorkhabi, A. Kazempour, S. Moradi-Alavian, E. Asghari, J.J. Lamb, 3D nanostructured nickel film supported to a conducting polymer as an electrocatalyst with exceptional properties for hydrogen evolution reaction. International Journal of Hydrogen Energy 48 (2023) 29865-29876. https://doi.org/10.1016/j.ijhydene.2023.04.139
T.N. Amirabad, A.A. Ensafi, K.Z. Mousaabadi, B. Rezaei, M. Demir, Binder-free engineering design of Ni-MOF ultrathin sheet-like grown on PANI@GO decorated nickel foam as an electrode for in hydrogen evolution reaction and asymmetric supercapacitor. International Journal of Hydrogen Energy 48 (2023) 29471-29484. https://doi.org/10.1016/j.ijhydene.2023.04.159
X. Chen, Y. Chen, Z. Shen, C. Song, P. Ji, N. Wang, D. Su, Y. Wang, G. Wang, L. Cui, Self-crosslinkable polyaniline with coordinated stabilized CoOOH nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science 529 (2020) 147173. https://doi.org/10.1016/j.apsusc.2020.147173
Y. Zou, Y. Huang, L.W. Jiang, A. Indra, Y. Wang, H. Liu, J.J. Wang. Polyaniline coating enables electronic structure engineering in Fe3O4 to promote alkaline oxygen evolution reaction. Nanotechnology 33 (2022) 155402. https://doi.org/10.1088/1361-6528/ac475c
V. Ashok, S. Mathi, M. Sangamithirai, J. Jayabharathi, Regulated Bimetal-Doped Polyaniline: Amorphous-Crumple-Structured Viable Electrocatalyst for an Efficient Oxygen Evolution Reaction. Energy and Fuels 36 (2022) 14349-14360. https://doi.org/10.1021/acs.energyfuels.2c03022
Z. Xue, Y. Wang, M. Yang, T. Wang, H. Zhu, Y. Rui, S. Wu, W. An, In-situ construction of electrodeposited polyaniline/nickel-iron oxyhydroxide stabilized on nickel foam for efficient oxygen evolution reaction at high current densities. International Journal of Hydrogen Energy 47 (2022) 34025-34035. https://doi.org/10.1016/j.ijhydene.2022.08.023
Y. Duan, Z. Huang, J. Ren, X. Dong, Q. Wu, R. Jia, X. Xu, S. Shi, S. Han, Highly efficient OER catalyst enabled by in situ generated manganese spinel on polyaniline with strong coordination. Dalton Transactions 51 (2022) 9116-9126. https://doi.org/10.1039/d2dt01236g
U. Stamenović, N. Gavrilov, I.A. Pašti, M. Otoničar, G. Ćirić-Marjanović, S.D. Škapin, M. Mitrić, V. Vodnik, One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction. Electrochimica Acta 281 (2018) 549-561. https://doi.org/10.1016/j.electacta.2018.05.202
H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices 1 (2016) 225-255. https://doi.org/10.1016/j.jsamd.2016.08.001
C.W. Kuo, J.C. Chang, B.W. Wu, T.Y. Wu, Electrochemical characterization of RuO2-Ta2O5/polyaniline composites as potential redox electrodes for supercapacitors and hydrogen evolution reaction. International Journal of Hydrogen Energy 45 (2019) 22223-22231. https://doi.org/10.1016/j.ijhydene.2019.08.059
Y. Chen, Q. Zhang, X. Jing, J. Han, L. Yu, Synthesis of Cu-doped polyaniline nanocomposites (nano Cu@PANI) via the H2O2-promoted oxidative polymerization of aniline with copper salt. Materials Letters 242 (2019) 170-173. https://doi.org/10.1016/j.matlet.2019.01.143
I. Pašti, M. Milojević-Rakić, K. Junker, D. Bajuk-Bogdanović, P. Walde, G. Ćirić-Marjanović, Superior capacitive properties of polyaniline produced by a one-pot peroxidase/H2O2-triggered polymerization of aniline in the presence of AOT vesicles. Electrochimica Acta 258 (2017) 834-841. https://doi.org/10.1016/j.electacta.2017.11.133
J. Mišurović, M. Mojović, B. Marjanović, P. Vulić, G. Ćirić-Marjanović, Magnetite nanoparticles-catalysed synthesis of conductive polyaniline. Synthetic Metals 257 (2019) 116174. https://doi.org/10.1016/j.synthmet.2019.116174
J. Stejskal, R.G. Gilbert, Polyaniline. Preparation of a conducting polymer(IUPAC Technical Report), Pure and Applied Chemistry 74 (2002) 857-867. https://doi.org/10.1351/pac200274050857
E.T. Kang, K.G. Neoh, K.L. Tan, Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science 23 (1998) 277-324. https://doi.org/10.1016/S0079-6700(97)00030-0
P. Ahuja, S.K. Ujjain, I. Arora, M. Samim, Hierarchically Grown NiO-Decorated Polyaniline-Reduced Graphene Oxide Composite for Ultrafast Sunlight-Driven Photocatalysis. ACS Omega Journal 3 (2018) 7846-7855. https://doi.org/10.1021/acsomega.8b00765
S. Golczak, A. Kanciurzewska, M. Fahlman, K. Langer, J.J. Langer, Comparative XPS surface study of polyaniline thin films. Solid State Ionics 179 (2008) 2234-2239. https://doi.org/10.1016/j.ssi.2008.08.004
H. Peng, G. Ma, K. Sun, J. Mu, X. Zhou, Z. Lei, A novel fabrication of nitrogen-containing carbon nanospheres with high rate capability as electrode materials for supercapacitors. RSC Advances 5 (2015) 12034-12042. https://doi.org/10.1039/c4ra11889h
S. Cho, O.S. Kwon, S.A. You, J. Jang, Shape-controlled polyaniline chemiresistors for high-performance DMMP sensors: Effect of morphologies and charge-transport properties. Journal of Materials Chemistry A 1 (2013) 5679-5688. https://doi.org/10.1039/c3ta01427d
H.A. Bandal, A.R. Jadhav, A.H. Tamboli, H. Kim, Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochimica Acta 249 (2017) 253-262. https://doi.org/10.1016/j.electacta.2017.07.178
A.P. Murthy, J. Theerthagiri, J. Madhavan, K. Murugan, Highly active MoS2/carbon electrocatalysts for the hydrogen evolution reaction - Insight into the effect of the internal resistance and roughness factor on the Tafel slope. Physical Chemistry Chemical Physics 19 (2017) 1988-1998. https://doi.org/10.1039/C6CP07416B
N. Lingappan, I. Jeon, W. Lee, Polyaniline induced multi-functionalities in interfacially coupled electrocatalysts for hydrogen/oxygen evolution reactions. Journal of Materials Chemistry A 11 (2023) 17797-17809. https://doi.org/10.1039/d3ta02389c
F. Meng, Y. Yu, D. Sun, S. Lin, X. Zhang, T. Xi, C. Xu, H. Ouyang, W. Chu, L. Shang, Q. Su, B. Xu, Three-Dimensional Needle Branch-like PANI/CoNiP Hybrid Electrocatalysts for Hydrogen Evolution Reaction in Acid Media. ACS Applied Energy Materials Journal 4 (2021) 2471-2480. https://doi.org/10.1021/acsaem.0c03033
Q. Dang, Y. Sun, X. Wang, W. Zhu, Y. Chen, F. Liao, H. Huang, M. Shao, Carbon dots-Pt modified polyaniline nanosheet grown on carbon cloth as stable and high-efficient electrocatalyst for hydrogen evolution in pH-universal electrolyte. ACS Applied Energy Materials Journal 257 (2019) 117905. https://doi.org/10.1016/j.apcatb.2019.117905
C.C.L.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society 137 (2015) 4347-4357. https://doi.org/10.1021/ja510442p
P. Yu, L. Wang, Y. Xie, C. Tian, F. Sun, J. Ma, M. Tong, W. Zhou, J. Li, H. Fu, High-Efficient, Stable Electrocatalytic Hydrogen Evolution in Acid Media by Amorphous FexP Coating Fe2N Supported on Reduced Graphene Oxide. Small 14 (2018) 1801717. https://doi.org/10.1002/smll.201801717
B. Konkena, K.J. Puring, I. Sinev, S. Piontek, O. Khavryuchenko, J.P. Dürholt, R. Schmid, H. Tüysüz, M. Muhler, W. Schuhmann, U.P. Apfel, Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation. Nature Communications 7 (2016) 12269. https://doi.org/10.1038/ncomms12269
Y. Ge, P. Dong, S.R. Craig, P.M. Ajayan, M. Ye, J. Shen, Transforming Nickel Hydroxide into 3D Prussian Blue Analogue Array to Obtain Ni2P/Fe2P for Efficient Hydrogen Evolution Reaction, Advanced Energy Materials 8 (2018) 1800484. https://doi.org/10.1002/aenm.201800484
T.H. Wondimu, G.C. Chen, D.M. Kabtamu, H.Y. Chen, A.W. Bayeh, H.C. Huang, C.H. Wang, Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction. International Journal of Hydrogen Energy 43 (2018) 6481-6490. https://doi.org/10.1016/j.ijhydene.2018.02.080
L. Tian, X. Yan, X. Chen. Electrochemical Activity of Iron Phosphide Nanoparticles in Hydrogen Evolution Reaction. ACS Catalysis Journal 6 (2016) 5441-5448. https://doi.org/10.1021/acscatal.6b01515
D.A. Dalla Corte, C. Torres, P.D.S. Correa, E.S. Rieder, C.D.F. Malfatti. The hydrogen evolution reaction on nickel-polyaniline composite electrodes. International Journal of Hydrogen Energy 37 (2012) 3025-3032. https://doi.org/10.1016/j.ijhydene.2011.11.037
J. Milikić, G. Ćirić-Marjanović, S. Mentus, D.M.F. Santos, C.A.C. Sequeira, B. Šljukić, Pd/c-PANI electrocatalysts for direct borohydride fuel cells. Electrochimica Acta 213 (2016) 298-305. https://doi.org/10.1016/j.electacta.2016.07.109
A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, New York, United States, 2001, p. 864. ISBN 978-0471043720
B. Kurt Urhan, H. Öztürk Doğan, T. Öznülüer Özer, Ü. Demir, Palladium-coated polyaniline nanofiber electrode as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy 47 (2022) 4631-4640. https://doi.org/10.1016/j.ijhydene.2021.11.101
C. Feng, M.B. Faheem, J. Fu, Y. Xiao, C. Li, Y. Li, Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis Journal 10 (2020) 4019-4047. https://doi.org/10.1021/acscatal.9b05445
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Science Fund of the Republic of Serbia
Grant numbers 7750219 -
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-66/2024-03/200146;451-03-65/2024-03/200146