Routes to enhanced performance of electrolytic hydrogen evolution reaction over the carbon-encapsulated transition metal alloys

Review paper

Authors

  • Haruna Adamu Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria and Department of Chemistry, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria https://orcid.org/0000-0002-1899-8281
  • Mohammad Qamar Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia and K. A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia https://orcid.org/0000-0002-5351-9872

DOI:

https://doi.org/10.5599/jese.1446

Keywords:

Electrocatalysis, climate change, sustainable and clean energy, water splitting
Graphical Abstract

Abstract

A substantial and steady decrease in the energy cost produced from renewable sources has revived interest in hydrogen production through water electrolysis. Deployment of electrolysis for H2 production is now closer to reality than ever before. Yet, several challenges associated with production cost, infrastructure, safety, storage, and so forth remain to be addressed. One of the overriding challenges is the production cost caused by a platinum electrode. To overcome such limitations, developing low-cost and stable electro­catalysts very close to the same electrode activity as platinum (Pt) metal is crucial to solving the efficiency issue in the process. Therefore, this review is in the direction of designing binary and ternary alloys of transition metal-based electrocatalysts anchored on carbon and focuses more on routes to enhance the performance of the hydrogen evolution reaction (HER). The strategic routes to reduce overpotential and enhance electrocatalysts perfor­mance are discussed thoroughly in the light of HER mechanism and its derived descriptor.

Downloads

Download data is not yet available.

References

M. A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, J. Zhang, Electrochemical Energy Reviews 1 (2018) 483-530. https://doi.org/10.1007/s41918-018-0014-z

A. Li, Y. Sun, T. Yao, H. Han, Chemistry, A European Journal 24 (2018) 18334-18355. https://doi.org/10.1002/chem.201803749

J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K.-Y. Wong, Chemical Reviews 120 (2019) 851-918. https://doi.org/10.1021/acs.chemrev.9b00248

J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chemical Society Reviews 49 (2020) 2196-2214. https://doi.org/10.1039/C9CS00607A

E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Advanced Materials 24 (2012) 195-208. https://doi.org/10.1002/adma.201103102

S. D. Park, J. M. Vohs, R. J. Gorte, Nature 404 (2000) 265-267. https://doi.org/10.1038/35005040

S. Liu, B. Yu, W. Zhang, J. Zhu, Y. Zhai, J. Chen, Progress in Chemistry 26 (2014) 170. DOI: 10.7536/PC140420

F. Lu, M. Zhou, Y. Zhaou, X. Zeng, Small 13 (2017) 1701931. https://doi.org/10.1002/smll.201701931

R. Eisenberg, H. B. Gray, G.W. Crabtree, Proceedings of National Academy of Sciences 117 (2020) 12543-12549. https://doi.org/10.1073/pnas.1821674116

F. Yu, L. Yu, I. Mishra, Y. Yu, Z. Ren, H. Zhou, Materials Today Physics 1 (2018) 121-138. https://doi.org/10.1016/j.mtphys.2018.11.007

X. Zou, Y. Zhang, Chemical Society Reviews 44 (2015) 5148-5180. https://doi.org/10.1039/C4CS00448E

C. Hu, L. Zhang, J. Gong, Energy and Environmental Science 12 (2019) 2620-2645. https://doi.org/10.1039/C9EE01202H

Z. P. Wu, X. F. Lu, S. Q. Zang, X. W. Lou, Advanced Functional Materials 30 (2020) 1910274. https://doi.org/10.1002/adfm.201910274

E. Fabbri, T. J. Schmidt, ACS Catalysis 12 (2018) 9765-9774. https://doi.org/10.1088/2515-7655/ab812f

Y. Yan, B. Y. Xia, B. Zhao, X. Wang, Journal of Materials Chemistry A 4 (2016) 17587-17603. https://doi.org/10.1039/C6TA08075H

R. Loukrakpam, J. Luo, T. He, Y. Chen, Z. Xu, P. N. Njoki, B. N. Wanjala, B. Fang, D. Mott, J. Yin, J. Klar, B. Powell, C. J. Zhong, Journal of Physical Chemistry C 115 (2011) 1682-1694. https://doi.org/10.1021/jp109630n

W. Wang, Z. Wang, J. Wang, C. J. Zhong, C. J. Liu, Advanced Science 4 (2017) 1600486. https://doi.org/10.1002/advs.201600486

C. J. Zhong, J. Luo, P. N. Njoki, D. Mott, B. Wanjala, R. Loukrakpam, S. Lim, L. Wang, B. Fang, Z. Xu, Energy Environmental Science 1 (2008) 454-466. https://doi.org/10.1039/B810734N

R. Jiang, S. Tung, Z. Tang, L. Li, L. Ding, X. Xi, Y. Liu, L. Zhang, J. Zhang, Energy Storage Materials 12 (2018) 260-276. https://doi.org/10.1016/j.ensm.2017.11.005

C. Zhang, X. Shen, Y. Pan, Z. Peng, Frontiers in Energy 11 (2017) 268-285. https://doi.org/10.1007/s11708-017-0466-6

S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C. J. Liu, Journal of Materials Chemistry A 5 (2017) 1808-1825. https://doi.org/10.1039/C6TA08580F

C. Le Quéré, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A. C. Manning, J. I. Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, Earth System Science Data 10 (2018) 405-448. https://doi.org/10.5194/essd-10-405-2018

S. Wang, A. Lu, C. J. Zhong, Nano Convergence 8 (2021) 4. https://doi.org/10.1186/s40580-021-00254-x

M. Huynh, T. Ozel, C. Liu, E. C. Lau, D. G. Nocera, Chemical Science 8 (2017) 4779-4794. https://doi.org/10.1039/C7SC01239J

S. French, Johnson Matthey Technology Reviews 64 (2020) 357-370. https://doi.org/10.1595/205651320X15910225395383

A. Züttel, A. Remhof, A. Borgschulte, O. Friedrichs, Philosophical Transaction of Royal Society A: Mathematical Physical and Engineering Sciences 368 (2010) 3329-3342. https://doi.org/10.1098/rsta.2010.0113

S.M. El-Refaei, P. A. Russo, N. Pinna, ACS Applied Materials and Interfaces 13 (2021) 22077-22097. https://doi.org/10.1021/acsami.1c02129

Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chemical Reviews 111 (2011) 3577-3613. https://doi.org/10.1021/cr100290v

A. Ursua, L. M. Gandıa, P. Sanchis, Proceedings of the IEEE 100 (2012) 410-426. https://doi.org/10.1109/JPROC.2012.2184212

Z. Chen, H. Qing, K. Zhou, D. Sun, R. Wu, Progress in Materials Science 108 (2020) 100618. https://doi.org/10.1016/j.pmatsci.2019.100618

H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S. Z. Qiao, Chemical Reviews 118 (2018) 6337-6408. https://doi.org/10.1021/acs.chemrev.7b00689

C. G. Morales-Guio, L. A. Stern, X. Hu, Chemical Society Review 43 (2014) 6555-6569. https://doi.org/10.1039/C3CS60468C

C. Cui, X. Hu, L. Wen, Journal of Semiconductors 41 (2020) 091705. https://doi.org/10.1088/1674-4926/41/9/091705

J. Huang, Y. Wang, Cell Reports Physical Science 1 (2020) 100138. https://doi.org/10.1016/j.xcrp.2020.100138

F. Li, G. F. Han, H. J. Noh, J. P. Jeon, I. Ahmad, S. Chen, C. Yang, Y. Bu, Z. Fu,Y. Lu, J. B. Baek, Nature Communications 10 (2019) 4060. https://doi.org/10.1038/s41467-019-12012-z

T. R. Cook, D. K. Dogutan, S. Y. Recee, Y. Surendranath, T. S. Teet and D. G. Nocera, Chemical Reviews 110 (2010) 6474-6502. https://doi.org/10.1021/cr100246c

S. Trasatti, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 39 (1972) 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6

M.T.M. Koper, Chemical Science 4 (2013) 2710-2723. https://doi.org/10.1039/C3SC50205H

Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai, Q. Zhang, J . Liu, C. He, Z. Lin, Nano Energy 50 (2018) 212-219. https://doi.org/10.1016/j.nanoen.2018.05.033

J. Fan, Z. Chen, H. Shi, G. Zhao, Chemical Communications 52 (2016) 4290-4293. https://doi.org/10.1039/C5CC09699E

Y. Jin, X. Yue, C. Shu, S. Huang, P. K. Shen, Journal of Materials Chemistry A 5 (2017) 2508-2513. https://doi.org/10.1039/C6TA10802D

C. Hu, Y. Xiao, Y. Zou, L. Dai, Electrochemical Energy Reviews 1 (2018) 84-112. https://doi.org/10.1007/s41918-018-0003-2

X. Zou, Y. Zhang, Chemical Society Reviews 44 (2015) 5148-5180. https://doi.org/10.1039/C4CS00448E

D. Yu, L. Wei, W. Jiang, H. Wang, B. Sun, Q. Zhang, K. Goh, R. Si, Y. Chen, Nanoscale 5 (2013) 3457-3464. https://doi.org/10.1039/C3NR34267K

P. Ganesan, A. Sivanantham, S. Shanmugam, ACS Applied Materials and Interfaces 9 (2017) 12416-12426. https://doi.org/10.1021/acsami.7b00353

X. Zhu, T. Jin, C. Tian, C. Lu, X. Liu, M. Zeng, Zhuang X. Zhuang, S. Yang, L. He, H. Liu, S. Dai, Advanced Materials 29 (2017) 1704091. https://doi.org/10.1002/adma.201704091

R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nature Materials 11 (2012) 550-557. https://doi.org/10.1038/nmat3313

J. Zhang, Q. Zhang, X. Feng, Advanced Materials 31 (2019) 1808167. https://doi.org/10.1002/adma.201808167

M. M. Jakšić, Electrochimica Acta 29 (1984) 1539-1550. https://doi.org/10.1016/0013-4686(84)85007-0

R. Zhang, Z. Sun, R. Feng, Z. Lin, H. Liu, M. Li, Y. Yang, R. Shi, W. Zhang, Q. Chen, ACS Applied Materials and Interfaces 9 (2017) 38419-38427. https://doi.org/10.1021/acsami.7b10016

A. Oh, Y. J. Sa, H. Hwang, H. Baik, J. Kim, B. Kim, SH. Joo, K Lee, Nanoscale 8 (2016)16379-16386. https://doi.org/10.1039/C6NR04572C

X. Chen, P. Gao, H. Liu, J. Zu, B. Zhang, Y. Zhang, Y. Tang, C. Xian, Electrochimica Acta 267 (2018) 8-14. https://doi.org/10.1016/j.electacta.2018.01.192

Z. Chen, Y. Ha, Y. Liu, H. Wang, H. Yang, H. Xu,Y. Li, R. Wu, ACS Applied Materials and Interfaces 10 (2018) 7134-7144. https://doi.org/10.1021/acsami.7b18858

P. Liu, J. A. Rodriguez, Journal of the American Chemical Society 127 (2005) 14871-14878. https://doi.org/10.1021/ja0540019

W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, R. R. Adzic, Angewandte Chemie International Edition 51 (2012) 6131-6135. https://doi.org/10.1002/anie.201200699

H. Vrubel and X. Hu, Angewandte Chemie International Edition 51, (2012) 12703-12706. https://doi.org/10.1002/anie.201207111

D. Kong, H. Kong, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Nano Letters 13 (2013) 1341-1347. https://doi.org/10.1021/nl400258t

J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Advanced Materials 28 (2016) 215-230. https://doi.org/10.1002/adma.201502696

Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nature Materials 10 (2011) 780-786. https://doi.org/10.1038/nmat3087

C. C. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, Journal of the American Chemical Society 135 (2013) 16977-16987. https://doi.org/10.1021/ja407115p

J. Ke, M. A. Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, Y. Hou, Nano-Micro Letters 10 (2018) 69. https://doi.org/10.1007/s40820-018-0222-4

Y. Yan, B. Xia, Z. Xu, X. Wang, ACS Catalysis 4 (2014) 1693-1705. https://doi.org/10.1021/cs500070x

W. F. Chen, J. T. Muckerman, E. Fujita, Chemical Communications 49 (2013) 8896-8909. https://doi.org/10.1039/C3CC44076A

P. Xiao, W. Chen, X. Wang, Advanced Energy Materials 5 (2015) 1500985. https://doi.org/10.1002/aenm.201500985

Y. J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, H. Wang, Chemical Reviews 115 (2015) 3433-3467. https://doi.org/10.1021/cr500519c

Y. Hou, S. Cui, Z. Wen, X. Guo, X. Feng, J. Chen, Small 11 (2015) 5940-5980. https://doi.org/10.1002/smll.201502297

Y. Shen, Y. Zhou, D. Wang, X. Wu, J. Li and J. Xi, Advanced Energy Materials 8 (2018) 1701759. https://doi.org/10.1002/aenm.201701759

P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong, S. Liu, Z. Lin, M. Li, G. Xia, Y. Yang, J. Su, Advanced Materials 30 (2018) 1705324. https://doi.org/10.1002/adma.201705324

Y. Zhu, G. Chen, X. Xu, G. Yang, M. Liu, and Z. Shao, ACS Catalysis 7 (2017) 3540-3547. https://doi.org/10.1021/acscatal.7b00120

S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catalysis 6 (2016) 8069-8097. https://doi.org/10.1021/acscatal.6b02479

Y. Zhu, W. Zhou, Z. Shao, Small 13 (2017) 1603793. https://doi.org/10.1002/smll.201603793

S. Gupta, L. Qiao, S. Zhao, H. Xu, Y. Lin, Advanced Energy Materials 6 (2016) 1601198. https://doi.org/10.1002/aenm.201601198

Y. Fu, H. Y. Yu, C. Jiang, T. H. Zhang, R. Zhan, X. Li, J. F. Li, J. H. Tian, R. Yang, Advanced Functional Materials 28 (2018) 1705094. https://doi.org/10.1002/adfm.201705094

J. Yu, Y. Zhong, W. Zhou, Z. Shao, Journal of Power Sources 338 (2017) 26-33. https://doi.org/10.1016/j.jpowsour.2016.11.023

C. Tang, L. Zhong, B. Zhang, H.F. Wang, Q. Zhang, Advanced Materials 30 (2018) 1705110. https://doi.org/10.1002/adma.201705110

Q. Hu, X. Liu, C. Tang, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He, Sustainable Energy Fuels 2 (2018) 1085-1092. https://doi.org/10.1039/C7SE00576H

G. Li, Y. Sun, J. Rao, J. Wu, A. Kumar, Q. N. Xu, C. Fu, E. Liu, G. R. Blake, P. Werner, B. Shao, Advanced Energy Materials 8 (2018) 1801258. https://doi.org/10.1002/aenm.201801258

J. S. Li, Y. Wang, C. H. Liu, S. L. Li, Y. G. Wang, L. Z. Dong, Z. H. Dai, Y. F. Li, Y. Q. Lan, Nature Communications 7 (2016) 10671. https://doi.org/10.1038/ncomms11204

Q. Hu, G. Li, Z. Han, Z. Wang, X. Huang, H. Yang, Q. Zhang, J. Liu, C. He, Journal of Materials Chemistry A 7 (2019) 14380-14390. https://doi.org/10.1039/C9TA04163J

Q. Hu, G. Li, X. Liu, B. Zhu, G. Li, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He, Journal of Materials Chemistry A 7 (2019) 461-468. https://doi.org/10.1039/C8TA09534E

H. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng, Y.A. Peng, Energy and Environmental Science 11 (2018) 2363-2371. https://doi.org/10.1039/C8EE00934A

C. Hu, M. Li, J. Qiu, Y. P. Sun, Chemical Society Reviews 48 (2019) 2315-2337. https://doi.org/10.1039/C8CS00750K

J. Deng, P. Ren, D. Deng, X. Bao, Angewandte Chemie International Edition 54 (2015) 2100-2104. https://doi.org/10.1002/anie.201409524

B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, Journal of the American Chemical Society 127 (2005) 5308-5309. https://doi.org/10.1021/ja0504690

J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Journal of Electrochemical Society 152 (2005) J23-J26. https://doi.org/10.1149/1.1856988

J. Deng, L. Yu, D. Deng, X. Chen, F. Yang, X. Bao, Journal of Materials Chemistry A 1 (2013) 14868-14873. https://doi.org/10.1039/C3TA13759G

Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, Angewandte Chemie 126 (2014) 3749-3753. https://doi.org/10.1002/ange.201400358

Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang, Q. Chen, ACS Catalysis 7 (2017) 469-479. https://doi.org/10.1021/acscatal.6b02573

J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Energy and Environmental Science 7 (2014) 1919-1923. https://doi.org/10.1039/C4EE00370E

H.X. Zhong, J. Wang, Q. Zhang, F. Meng, D. Bao, T. Liu, X.Y. Yang, Z.W. Chang, J.M. Yan, X. B Zhang, Advanced Sustainable Systems 1 (2017) 1700020. https://doi.org/10.1002/adsu.201700020

X. Lu, X. Tan, Q. Zhang, R. Daiyan, J. Pan, R. Chen, H.A. Tahini, D.W. Wang, S.C. Smith, R. Amal, Journal of Materials Chemistry A 7 (2019) 12154-12165. https://doi.org/10.1039/C9TA01723B

H. Liu, C. Xi, J. Xin, G. Zhang, S. Zhang, Z. Zhang, Q. Huang, J. Li, H. Liu, J. Kang, Chemical Engineering Journal 404 (2021) 126530. https://doi.org/10.1016/j.cej.2020.126530

S. Ghosh, R. N. Basu, Nanoscale 10 (2018) 11241-11280. https://doi.org/10.1039/C8NR01032C

A. Phuruangrat, D. J. Ham, S. J. Hong, S. Thongtem, J. S. Lee, Journal of Materials Chemistry 20 (2010) 1683-1690. https://doi.org/10.1039/B918783A

M. Gong, H. Dai, Nano Research 8 (2015) 23-39. https://doi.org/10.1007/s12274-014-0591-z

W. Chen, E. J. Santos, W. Zhu, E. Kaxiras, Z. Zhang, Nano Letters 13 (2013) 509-514. https://doi.org/10.1021/nl303909f

C. Tsai, F. Abild-Pedersen, J. K. Nørskov, Nano Letters 14 (2014) 1381-1387. https://doi.org/10.1021/nl404444k

D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi, J. S. Lee, ACS Nano 8 (2014) 5164-5173. https://doi.org/10.1021/nn5012144

H. Yuan, J. Li, C. Yuan, Z. He, ChemElectroChem 1 (2014) 1828-1833. https://doi.org/10.1002/celc.201402150

Y. Yan, X. Ge, Z. Liu, J. Y. Wang, J. M. Lee, X. Wang, Nanoscale 5 (2013) 7768-7771. https://doi.org/10.1039/C3NR02994H

D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, S. O. Kim, Nano Letters 14 (2014) 1228-1233. https://doi.org/10.1021/nl404108a

Y. Cai, X. Yang, T. Liang, L. Dai, L. Ma, G. Huang, W. Chen, H. Chen, H. Su, M. Xu, Nanotechnology 25 (2014) 465401. https://doi.org/10.1088/0957-4484/25/46/465401

D. McAteer, Z. Gholamvand, N. McEvoy, A. Harvey, E. O’Malley, G. S. Duesberg, J. N. Coleman, ACS Nano 10 (2016) 672-683. https://doi.org/10.1021/acsnano.5b05907

L. Najafi, S. Bellani, R. Oropesa‐Nuñez, A. Ansaldo, M. Prato, A. E. Del Rio Castillo, F. Bonaccorso, Advanced Energy Materials 8 (2018) 1703212. https://doi.org/10.1002/aenm.201703212

S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Chen, Q. Yan, J. Chen, S. Ramakrishna, Angewandte Chemie 126 (2014) 12802-12807. https://doi.org/10.1002/ange.201408876

Y. Huang, H. Lu, H. Gu, J. Fu, S. Mo, C. Wei, Y. E. Miao, T. A. Liu, Nanoscale 7 (2015)18595-18602. https://doi.org/10.1039/C5NR05739F

D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angewandte Chemie 125 (2013) 389-393. https://doi.org/10.1002/ange.201204958

S. Jing, J. Lu, G. Yu, S. Yin, L. Luo, Z. Zhang, Y. Ma, W. Chen, P. K. Shen, Advanced Materials 30 (2018) 1705979. https://doi.org/10.1002/adma.201705979

Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan, G. Qian, J. Zou, Advanced Materials 29 (2017) 1700017. https://doi.org/10.1002/adma.201700017

A. Wu, Y. Xie, H. Ma, C. Tian, Y. Gu, H. Yan, X. Zhang, G. Yang, H. Fu, Nano Energy 44 (2018) 353-363. https://doi.org/10.1016/j.nanoen.2017.11.045

Downloads

Published

14-08-2022

How to Cite

Adamu, H., & Qamar, M. . (2022). Routes to enhanced performance of electrolytic hydrogen evolution reaction over the carbon-encapsulated transition metal alloys: Review paper. Journal of Electrochemical Science and Engineering, 12(5), 947–974. https://doi.org/10.5599/jese.1446

Issue

Section

Electrochemical Science