Beyond current frontiers of electrocatalysis
Review paper
DOI:
https://doi.org/10.5599/jese.2634Keywords:
Activation energy, preexponential factor, barrier, reactant-catalyst collisions, cteristic vibrations, tunnelingAbstract
One of the key reasons why the transition to renewable energy sources is progressing slowly is the low efficiency of processes at electrified interfaces where electricity is converted and stored as chemical energy. The challenge behind low efficiency is sluggish electrochemical conversion reactions. To resolve low efficiency, it is necessary to comprehend the intrinsic reasons behind the unusually complex phenomena of converting electrical energy into chemical energy, and vice versa, chemical energy into electrical energy. An important example is the electrolysis of water, where, after decades of research, it is not clear how to significantly accelerate the processes of hydrogen and oxygen generation. Of critical importance for the control of the water electrolysis mechanism is understanding the origins of the electrocatalytic activity. If we ask a key question from a conceptual point of view, namely: what are the origins of electrocatalytic activity? The answer will be, in most cases, as it was 70 years ago. Namely, the paradigm of electrocatalysis is the Sabatier principle, which suggests optimal ("not too strong, not too weak") binding of intermediates as the main prerequisite for a high reaction rate. Conventional wisdom suggests that confirmation of this should be a linear relationship between the adsorption energy of the intermediate and the activation energy, known as the Brønsted-Evans-Polanyi relation. However, recent results show that lowering the activation energy is not necessarily beneficial for increasing the reaction rate. In this work, some fundamentally important questions about the nature of electrocatalytic activity will be raised. Identifying and analyzing these issues can be an important trigger and driver towards efficient water electrolysis and a more comprehensive understanding of electrocatalysis as a scientific field of key importance for the conversion, storage and utilization of energy from renewable sources.
Downloads
References
A. Frumkin, N. Polianovskaya, I. Bagotskaya, N. Grigoryev, Electrocatalysis and electrode surface properties, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 33 (1971) 319-328. https://doi.org/10.1016/S0022-0728(71)80120-1
P. Quaino, F. Juarez, E. Santos, W. Schmickler, Volcano plots in hydrogen electrocatalysis - uses and abuses, The Beilstein Journal of Nanotechnology 5 (2014) 846-854. https://doi.org/10.3762/bjnano.5.96
A. A. Balandin, The multiplet theory of catalysis. Structural factors in catalysis, Russian Chemical Reviews 31 (1962) 589-614. https://doi.org/10.1070/RC1962v031n11ABEH001323
A. A. Balandin, The multiplet theory of catalysis — energy factors in catalysis, Russian Chemical Reviews 33 (1964) 258-275. https://doi.org/10.1070/RC1964v033n05ABEH001407
R. Parsons, The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen, Transactions of the Faraday Society 54 (1958) 1053. https://doi.org/10.1039/tf9585401053
S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 39 (1972) 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6
A. R. Zeradjanin, J.-P. Grote, G. Polymeros, K. J. J. Mayrhofer, A Critical Review on Hydrogen Evolution Electrocatalysis: Re-exploring the Volcano-relationship, Electroanalysis 28 (2016) 2256-2269. https://doi.org/10.1002/elan.201600270
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, Trends in the Exchange Current for Hydrogen Evolution, Journal of The Electrochemical Society 152 (2005) J23. https://doi.org/10.1149/1.1856988
E. Santos, P. Quaino, W. Schmickler, Theory of electrocatalysis: hydrogen evolution and more, Physical Chemistry Chemical Physics 14 (2012) 11224. https://doi.org/10.1039/c2cp40717e
A. R. Zeradjanin, I. Spanos, J. Masa, M. Rohwerder, R. Schlögl, Perspective on experimental evaluation of adsorption energies at solid/liquid interfaces, Journal of Solid State Electrochemistry 25 (2021) 33-42. https://doi.org/10.1007/s10008-020-04815-8
A. R. Zeradjanin, P. Narangoda, I. Spanos, J. Masa, R. Schlögl, Expanding the frontiers of hydrogen evolution electrocatalysis-searching for the origins of electrocatalytic activity in the anomalies of the conventional model, Electrochimica Acta 388 (2021) 138583. https://doi.org/10.1016/j.electacta.2021.138583
O. A. Petrii, G. A. Tsirlina, Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science, Electrochimica Acta 39 (1994) 1739-1747. https://doi.org/10.1016/0013-4686(94)85159-X
J. M. Jaksic, N. M. Ristic, N. V. Krstajic, M. M. Jaksic, Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding FACTORS—I. individual electrocatalytic properties of transition metals, International Journal of Hydrogen Energy 23 (1998) 1121-1156. https://doi.org/10.1016/S0360-3199(98)00014-7
A. Holewinski, J.-C. Idrobo, S. Linic, High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction, Nature Chemistry 6 (2014) 828-834. https://doi.org/10.1038/nchem.2032
A. R. Zeradjanin, A. Vimalanandan, G. Polymeros, A. A. Topalov, K. J. J. Mayrhofer, M. Rohwerder, Balanced work function as a driver for facile hydrogen evolution reaction - comprehension and experimental assessment of interfacial catalytic descriptor, Physical Chemistry Chemical Physics 19 (2017) 17019-17027. https://doi.org/10.1039/C7CP03081A
N. Dubouis, A. Grimaud, The hydrogen evolution reaction: from material to interfacial descriptors, Chemical Science 10 (2019) 9165-9181. https://doi.org/10.1039/C9SC03831K
A. R. Zeradjanin, How to further accelerate key electrocatalytic reactions? Missing pieces of the roadmap toward efficient water electrolysis, in: Encyclopedia of Solid-Liquid Interfaces, K. Wandelt, G. Bussetti Eds., Elsevier, 2024: pp. 36-52. https://doi.org/10.1016/B978-0-323-85669-0.00110-0
Y. Li, A. Malkani, R. Gawas, S. Intikhab, B. Xu, M. Tang, J. Snyder, Interfacial Water Manipulation with Ionic Liquids for the Oxygen Reduction Reaction, ACS Catalysis 13 (2023) 382-391. https://doi.org/10.1021/acscatal.2c04914
D. Strmcnik, D. F. Van Der Vliet, K.-C. Chang, V. Komanicky, K. Kodama, H. You, V. R. Stamenkovic, N. M. Marković, Effects of Li + , K + , and Ba 2+ Cations on the ORR at Model and High Surface Area Pt and Au Surfaces in Alkaline Solutions, The Journal of Physical Chemistry Letters 2 (2011) 2733-2736. https://doi.org/10.1021/jz201215u
D. Y. Chung, P. P. Lopes, P. Farinazzo Bergamo Dias Martins, H. He, T. Kawaguchi, P. Zapol, H. You, D. Tripkovic, D. Strmcnik, Y. Zhu, S. Seifert, S. Lee, V. R. Stamenkovic, N. M. Markovic, Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction, Nature Energy 5 (2020) 222-230. https://doi.org/10.1038/s41560-020-0576-y
P. Searson, P. Nagarkar, R. Laianision, The effect of density of states, work function and exchange integral of polycrystalline and single crystal surfaces on the hydrogen evolution reaction, International Journal of Hydrogen Energy 14 (1989) 131-136. https://doi.org/10.1016/0360-3199(89)90002-5
R. W. Gurney, The quantum mechanics of electrolysis, Proceedings of the Royal Society A 134 (1931) 137-154. https://doi.org/10.1098/rspa.1931.0187
P. Siders, R. A. Marcus, Quantum effects in electron-transfer reactions, Journal of the American Chemical Society 103 (1981) 741-747. https://doi.org/10.1021/ja00394a003
R. R. Dogonadze, Z. D. Urushadze, Semi-classical method of calculation of rates of chemical reactions proceeding in polar liquids, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 32 (1971) 235-245. https://doi.org/10.1016/S0022-0728(71)80189-4
E. Santos, A. Lundin, K. Pötting, P. Quaino, W. Schmickler, Hydrogen evolution and oxidation—a prototype for an electrocatalytic reaction, Journal of Solid State Electrochemistry 13 (2009) 1101-1109. https://doi.org/10.1007/s10008-008-0702-4
M. J. Weaver, Dynamical solvent effects on activated electron-transfer reactions: principles, pitfalls, and progress, Chemical Reviews 92 (1992) 463-480. https://doi.org/10.1021/cr00011a006
M. J. Weaver, G. E. McManis, Dynamical solvent effects on electron-transfer processes: recent progress and perspectives, Accounts of Chemical Research 23 (1990) 294-300. https://doi.org/10.1021/ar00177a005
Z. He, Y. Chen, E. Santos, W. Schmickler, The Pre‐exponential Factor in Electrochemistry, Angewandte Chemie International Edition 57 (2018) 7948-7956. https://doi.org/10.1002/anie.201800130
B. E. Conway, Some considerations on the role of proton tunneling in certain charge transfer processes, Canadian Journal of Chemistry 37 (1959) 178-189. https://doi.org/10.1139/v59-025
J. O. Bockris, D. B. Matthews, Proton Tunneling in the Hydrogen‐Evolution Reaction, The Journal of Chemical Physics 44 (1966) 298-309. https://doi.org/10.1063/1.1726461
J. O. Bockris, D. B. Matthews, The mechanism of electrolytic hydrogen evolution—evidence for the participation of proton tunneling, Electrochimica Acta 11 (1966) 143-162. https://doi.org/10.1016/0013-4686(66)80003-8
M. Salomon, B. E. Conway, Classical and quantum-mechanical effects in electrochemical proton discharge, and the kinetics at low temperatures, Discussions of the Faraday Society 39 (1965) 223. https://doi.org/10.1039/df9653900223
R. Parsons, The kinetics of electrode reactions and the electrode material, Surface Science 2 (1964) 418-435. https://doi.org/10.1016/0039-6028(64)90083-4
R. Parsons, Effect of electrode material on the product of a branched electrochemical reaction, Discussions of the Faraday Society 45 (1968) 40. https://doi.org/10.1039/df9684500040
N. M. Marković, B. N. Grgur, P. N. Ross, Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions, The Journal of Physical Chemistry B 101 (1997) 5405-5413. https://doi.org/10.1021/jp970930d
Z.-D. He, J. Wei, Y.-X. Chen, E. Santos, W. Schmickler, Hydrogen evolution at Pt(111) - activation energy, frequency factor and hydrogen repulsion, Electrochimica Acta 255 (2017) 391-395. https://doi.org/10.1016/j.electacta.2017.09.127
A. B. Anderson, J. Roques, S. Mukerjee, V. S. Murthi, N. M. Markovic, V. Stamenkovic, Activation Energies for Oxygen Reduction on Platinum Alloys: Theory and Experiment, The Journal of Physical Chemistry B 109 (2005) 1198-1203. https://doi.org/10.1021/jp047468z
V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability, Science 315 (2007) 493-497. https://doi.org/10.1126/science.1135941
D. Teschner, G. Novell-Leruth, R. Farra, A. Knop-Gericke, R. Schlögl, L. Szentmiklósi, M. G. Hevia, H. Soerijanto, R. Schomäcker, J. Pérez-Ramírez, N. López, In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis, Nature Chemistry 4 (2012) 739-745. https://doi.org/10.1038/nchem.1411
M. Wakisaka, H. Suzuki, S. Mitsui, H. Uchida, M. Watanabe, Increased Oxygen Coverage at Pt−Fe Alloy Cathode for the Enhanced Oxygen Reduction Reaction Studied by EC−XPS, The Journal of Physical Chemistry C 112 (2008) 2750-2755. https://doi.org/10.1021/jp0766499
N. Wakabayashi, M. Takeichi, H. Uchida, M. Watanabe, Temperature Dependence of Oxygen Reduction Activity at Pt−Fe, Pt−Co, and Pt−Ni Alloy Electrodes, The Journal of Physical Chemistry B 109 (2005) 5836-5841. https://doi.org/10.1021/jp046204+
A.vR. Zeradjanin, Is a major breakthrough in the oxygen electrocatalysis possible?, Current Opinion in Electrochemistry 9 (2018) 214-223. https://doi.org/10.1016/j.coelec.2018.04.006
A. R. Zeradjanin, J. Masa, I. Spanos, R. Schlögl, Activity and Stability of Oxides During Oxygen Evolution Reaction‐‐‐From Mechanistic Controversies Toward Relevant Electrocatalytic Descriptors, Frontiers in Energy Research 8 (2021) 613092. https://doi.org/10.3389/fenrg.2020.613092
A. R. Zeradjanin, P. Narangoda, J. Masa, R. Schlögl, What Controls Activity Trends of Electrocatalytic Hydrogen Evolution Reaction?─Activation Energy Versus Frequency Factor, ACS Catalysis 12(19) (2022) 11597-11605. https://doi.org/10.1021/acscatal.2c02964
P. Narangoda, I. Spanos, J. Masa, R. Schlögl, A. R. Zeradjanin, Electrocatalysis Beyond 2020: How to Tune the Preexponential Frequency Factor, ChemElectroChem 9 (2022). https://doi.org/10.1002/celc.202101278
A. R. Zeradjanin, P. Narangoda, J. Masa, On the Origins of Intrinsic Limitations of Electrocatalytic Hydrogen Evolution in Alkaline Media, ChemCatChem 16 (2024) e202400634. https://doi.org/10.1002/cctc.202400634
R. R. Dogonadze, L. I. Krishtalik, The Fundamental Step in Electrode Reactions, Russian Chemical Reviews 44 (1975) 938-945. https://doi.org/10.1070/RC1975v044n11ABEH002399
A. R. Zeradjanin, N. Menzel, P. Strasser, W. Schuhmann, Role of Water in the Chlorine Evolution Reaction at RuO2-based Electrodes-Understanding Electrocatalysis as a Resonance Phenomenon, ChemSusChem 5 (2012) 1897-1904. https://doi.org/10.1002/cssc.201200193
M. A. Ardagh, O. A. Abdelrahman, P. J. Dauenhauer, Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response, ACS Catalisis 9 (2019) 6929-6937. https://doi.org/10.1021/acscatal.9b01606
M. A. Ardagh, T. Birol, Q. Zhang, O. A. Abdelrahman, P. J. Dauenhauer, Catalytic resonance theory: superVolcanoes, catalytic molecular pumps, and oscillatory steady state, Catalysis Science & Technology 9 (2019) 5058-5076. https://doi.org/10.1039/C9CY01543D
A. R. Zeradjanin, Understanding entropic barriers, Nature Energy 9 (2024) 514-515. https://doi.org/10.1038/s41560-024-01502-0
A. R. Zeradjanin, G. Polymeros, C. Toparli, M. Ledendecker, N. Hodnik, A. Erbe, M. Rohwerder, F. La Mantia, What is the trigger for the hydrogen evolution reaction? - towards electrocatalysis beyond the Sabatier principle, Physical Chemistry Chemical Physics 22 (2020) 8768-8780. https://doi.org/10.1039/D0CP01108H
C. G. Rodellar, J. M. Gisbert-Gonzalez, F. Sarabia, B. Roldan Cuenya, S. Z. Oener, Ion solvation kinetics in bipolar membranes and at electrolyte-metal interfaces, Nature Energy 9 (2024) 548-558. https://doi.org/10.1038/s41560-024-01484-z
F. Sarabia, C. Gomez Rodellar, B. Roldan Cuenya, S. Z. Oener, Exploring dynamic solvation kinetics at electrocatalyst surfaces, Nature Communications 15 (2024) 8204. https://doi.org/10.1038/s41467-024-52499-9
L. Chen, Q. Xu, S. W. Boettcher, Kinetics and mechanism of heterogeneous voltage-driven water-dissociation catalysis, Joule 7 (2023) 1867-1886. https://doi.org/10.1016/j.joule.2023.06.011
X.-Y. Li, A. Chen, X.-H. Yang, J.-X. Zhu, J.-B. Le, J. Cheng, Linear Correlation between Water Adsorption Energies and Volta Potential Differences for Metal/water Interfaces, The Journal of Physical Chemistry Letters 12 (2021) 7299-7304. https://doi.org/10.1021/acs.jpclett.1c02001
A.R. Zeradjanin, Frequent Pitfalls in the Characterization of Electrodes Designed for Electrochemical Energy Conversion and Storage, ChemSusChem 11 (2018) 1278-1284. https://doi.org/10.1002/cssc.201702287
A. R. Zeradjanin, E. Ventosa, A. S. Bondarenko, W. Schuhmann, Evaluation of the Catalytic Performance of Gas-Evolving Electrodes using Local Electrochemical Noise Measurements, ChemSusChem 5 (2012) 1905-1911. https://doi.org/10.1002/cssc.201200262
T. Lochner, M. Perchthaler, F. Hnyk, D. Sick, J. P. Sabawa, A. S. Bandarenka, Analysis of the Capacitive Behavior of Polymer Electrolyte Membrane Fuel Cells during Operation, ChemElectroChem 8 (2021) 96-102. https://doi.org/10.1002/celc.202001146
G. Ertl, Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture), Angewandte Chemie International Edition 47 (2008) 3524-3535. https://doi.org/10.1002/anie.200800480
Y. Matsumoto, E. Sato, Electrocatalytic properties of transition metal oxides for oxygen evolution reaction, Materials Chemistry and Physics 14 (1986) 397-426. https://doi.org/10.1016/0254-0584(86)90045-3
D. M. Newns, Self-Consistent Model of Hydrogen Chemisorption, Physical Review 178 (1969) 1123-1135. https://doi.org/10.1103/PhysRev.178.1123