Photo-bioelectrochemical cell anodes enhanced with titanium oxide, carbon nanotubes and chlorophyll-based catalyst on different supporting materials

Original scientific paper

Authors

  • Marcelinus Christwardana Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudarto, S.H., Tembalang, Semarang, Indonesia 50275 and Master Program of Energy, School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo, S.H., Pleburan, Semarang, Indonesia 50241 https://orcid.org/0000-0003-4084-1763
  • Athanasia Amanda Septevani Research Center for Environmental and Clean Technology, National Research and Innovation Agency, KST BRIN Cisitu, Bandung 40135, Indonesia and Collaborative Researh Center for Zero Waste and Sustainability, Universitas Katolik Widya Mandala, Surabaya 60114, Indonesia https://orcid.org/0000-0001-9022-0311
  • Dilla Dayanti Master Program of Energy, School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo, S.H., Pleburan, Semarang, Indonesia 50241 and Research Center for Environmental and Clean Technology, National Research and Innovation Agency, KST BRIN Cisitu, Bandung 40135, Indonesia https://orcid.org/0000-0002-4563-853X

DOI:

https://doi.org/10.5599/jese.2008

Keywords:

flexible materials, dye-catalyst, artificial photosynthesis, photo-current, maximum power density
Graphical Abstract

Abstract

An important part of a photo-bioelectrochemical cell (PBEC) is the photo-biocatalyst substrate taken as anode. This study aims to explain the effect of CNT/TiO2/chlorophyll photocatalyst coated on the cellulose nanopaper (CNP) substrate on the PBEC performance and to compare the results with those obtained for the commercial indium tin oxide (ITO) glass and flexible ITO as substrates. The results showed high sheet resistance of CNP, which is 61182 Ω sq-1, which is reduced by 80 % in the presence of CNT/TiO2/Chl biocatalyst. The highest output voltage of 0.95 to 1 V was produced by coating CNT/TiO2/Chl on the flexible ITO. The maximum current density (Jmax) of 3726 mA m-2 and the highest maximum power density value of around 574 mW m-2 were obtained for illuminated CNT/TiO2/Chl on the rigid ITO anode. In dark conditions, the highest power density was observed for CNP as the supporting substrate. The photo-bioelectrochemical cell adopting CNT/TiO2/Chl and CNP as the supporting substrate material has great potential for a variety of applications, such as wearable electronics, environmental monitoring, remote or off-grid energy supply, and renewable energy systems, thereby contributing to the advancement of sustainable energy technologies.

 

Downloads

Download data is not yet available.

References

N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells, Green Chemistry 22 (2020) 7168-7218. https://doi.org/10.1039/D0GC01148G

P. Semalti, S. N. Sharma, Dye sensitized solar cells (DSSCs) electrolytes and natural photo-sensitizers: a review, Journal of Nanoscience and Nanotechnology 20 (2020) 3647-3658. https://doi.org/10.1166/jnn.2020.17530

C. M. Hanna, R. T. Pekarek, E. M. Miller, J. Y. Yang, N. R. Neale, Decoupling Kinetics and Thermodynamics of Interfacial Catalysis at a Chemically Modified Black Silicon Semiconductor Photoelectrode, ACS Energy Letters 5 (2020) 1848-1855. https://doi.org/10.1021/acsenergylett.0c00714

F. Niu, D. Wang, F. Li, Y. Liu, S. Shen, T. J. Meyer, Hybrid photoelectrochemical water splitting systems: from interface design to system assembly, Advanced Energy Materials 10 (2020) 1900399. https://doi.org/10.1002/aenm.201900399

E. Musazade, R. Voloshin, N. Brady, J. Mondal, S. Atashova, S. K. Zharmukhamedov, I. Huseynova, S. Ramakrishna, M. M. Najafpour, J.-R. Shen, B. D. Bruce, S. I. Allakhverdiev, Biohybrid solar cells: Fundamentals, progress, and challenges, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 35 (2018) 134-156. https://doi.org/10.1016/j.jphotochemrev.2018.04.001

A. Orona-Navar, I. Aguilar-Hernández, T. López-Luke, A. Pacheco, N. Ornelas-Soto, Dye sensitized solar cell (DSSC) by using a natural pigment from microalgae, International Journal of Chemical Engineering and Applications 11 (2020) 14-17. https://doi.org/10.18178/ijcea.2020.11.1.772

N. T. R. N. Kumara, A. Lim, C. M. Lim, M. I. Petra, P. Ekanayake, Recent progress and utilization of natural pigments in dye sensitized solar cells: A review, Renewable and Sustainable Energy Reviews 78 (2017) 301-317. https://doi.org/10.1016/j.rser.2017.04.075

A. Efrati, C. H. Lu, D. Michaeli, R. Nechushtai, S. Alsaoub, W. Schuhmann, I. Willner, Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes, Nature Energy 1 (2016) 15021. https://doi.org/10.1038/nenergy.2015.21

M. Christwardana, A. A. Septevani, L. A. Yoshi, Sustainable electricity generation from photo-bioelectrochemical cell based on carbon nanotubes and chlorophyll anode, Solar Energy 227 (2021) 217-223. https://doi.org/10.1016/j.solener.2021.09.002

V. Mascoli, A. F. Bhatti, L. Bersanini, H. van Amerongen, R. Croce, The antenna of far-red absorbing cyanobacteria increases both absorption and quantum efficiency of Photosystem II, Nature Communications 13 (2022) 3562. https://doi.org/10.1038/s41467-022-31099-5

M. Li, V. Svoboda, G. Davis, D. Kramer, H. H. Kunz, H. Kirchhoff, Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection, Nature Plants 7 (2021) 979-988. https://doi.org/10.1038/s41477-021-00947-5

Y. S. Chang, H. C. Yang, L. Chao, Formation of Supported Thylakoid Membrane Bioanodes for Effective Electron Transfer and Stable Photo-current, ACS Applied Materials & Interfaces 14 (2022) 22216-22224. https://doi.org/10.1021/acsami.2c04764

M. Christwardana, A. A. Septevani, L. A. Yoshi, Outstanding Photo-bioelectrochemical Cell by Integrating TiO2 and Chlorophyll as Photo-bioanode for Sustainable Energy Generation, International Journal of Renewable Energy Development 11 (2022) 385. https://doi.org/10.14710/ijred.2022.41722

D. Kim, A. Ghicov, P. Schmuki, TiO2 Nanotube arrays: Elimination of disordered top layers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells, Electrochemistry Communications 10 (2008) 1835-1838. https://doi.org/10.1016/j.elecom.2008.09.029

W. Hou, R. Hu, S. Zhu, Y. Xiao, G. Han, A thiourea resin polymer as a multifunctional modifier of the buried interface for efficient perovskite solar cells with reduced lead leakage, Materials Chemistry Frontiers 6 (2022) 3338-3348. https://doi.org/10.1039/D2QM00703G

S. Lu, Y. Sun, K. Ren, K. Liu, Z. Wang, S. Qu, Recent development in ITO-free flexible polymer solar cells, Polymers 10 (2017) 5. https://doi.org/10.3390/polym10010005

A. K. Prabowo, A. P. Tiarasukma, M. Christwardana, D. Ariyanti, Microbial Fuel Cells for Simultaneous Electricity Generation and Organic Degradation from Slaughterhouse Wastewater, International Journal of Renewable Energy Development 5 (2016) 107-112. http://dx.doi.org/10.14710/ijred.5.2.107-112

A. A., Septevani, D., Burhani, Y., Sampora, Indriyati, Shobih, E. S., Rosa, D. Sondari, N. I. Margyaningsih, M. Septiyani, F. Yurid, & A. S. Handayani, A systematic study on the fabrication of transparent nanopaper based on controlled cellulose nanostructure from oil palm empty fruit bunch, Journal of Polymers and the Environment 30 (2022) 3901-3913. https://doi.org/10.1007/s10924-022-02484-4

J. H. Lee, S. H. Kang, H. Ruh, K. M. Yu, Development of a thickness meter for conductive thin films using four-point probe method, Journal of Electrical Engineering & Technology 16 (2021) 2265-2273. https://doi.org/10.1007/s42835-021-00725-5

Z. E. Allouni, M. R. Cimpan, P. J. Høl, T. Skodvin, N. R. Gjerdet, Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium, Colloids and Surfaces B: Biointerfaces 68 (2009) 83-87. https://doi.org/10.1016/j.colsurfb.2008.09.014

S. M. Miranda, G. E. Romanos, V. Likodimos, R. R. Marques, E. P. Favvas, F. K. Katsaros, K. L. Stefanopoulos, V. J. P. Vilar, J. L. Faria, P. Falaras, A. M. T. Silva, Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites, Applied Catalysis B: Environmental, 147 (2014) 65-81. https://doi.org/10.1016/j.apcatb.2013.08.013

L., Lv, K., Li, Y., Xie, Y., Cao, X. Zheng, Enhanced osteogenic activity of anatase TiO2 film: Surface hydroxyl groups induce conformational changes in fibronectin, Materials Science and Engineering: C 78 (2017) 96-104. https://doi.org/10.1016/j.msec.2017.04.056

G. Huang, T. W. Ng, T. An, G. Li, B. Wang, D. Wu, H. Y. Yip, H. Zhao, P. K. Wong, Interaction between bacterial cell membranes and nano-TiO2 revealed by two-dimensional FTIR correlation spectroscopy using bacterial ghost as a model cell envelope, Water Research 118 (2017) 104-113. https://doi.org/10.1016/j.watres.2017.04.023

W. A. Dhafina, M. Z. Daud, H. Salleh, The sensitization effect of anthocyanin and chlorophyll dyes on optical and photovoltaic properties of zinc oxide based dye-sensitized solar cells, Optik 207 (2020) 163808. https://doi.org/10.1016/j.ijleo.2019.163808

H. Nan, H. P. Shen, G. Wang, S. D. Xie, G. J. Yang, H. Lin, Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell, Optical Materials 73 (2017) 172-178. https://doi.org/10.1016/j.optmat.2017.07.036

D. Jiang, Y. Xu, D. Wu, Y. Sun, Visible-light responsive dye-modified TiO2 photocatalyst, Journal of Solid State Chemistry 181 (2008) 593-602. https://doi.org/10.1016/j.jssc.2008.01.004

Z. Karami, A. Soleimani-Gorgan, G. R. Vakili-Nezhaad, F. A. Roghabadi, A layer-by-layer green inkjet printing methodology for developing indium tin oxide (ITO)-based transparent and conductive nanofilms, Journal of Cleaner Production 379 (2022) 134455. https://doi.org/10.1016/j.jclepro.2022.134455

D. V. Vetoshkina, M. M. Borisova-Mubarakshina, I. A. Naydov, M. A. Kozuleva, B. N. Ivanov, Impact of high light on reactive oxygen species production within photosynthetic biological membranes, Journal of Biology and Life Science 6 (2015) 50-60. http://dx.doi.org/10.5296/jbls.v6i2.7277

A. Krieger-Liszkay, G. Shimakawa, Regulation of the generation of reactive oxygen species during photosynthetic electron transport, Biochemical Society Transactions 50 (2022) 1025-1034. https://doi.org/10.1042/BST20211246

G. Lenaz, Mitochondria and reactive oxygen species. Which role in physiology and pathology?, Advances in Mitochondrial Medicine (2012) 93-136. https://doi.org/10.1007/978-94-007-2869-1_5

M. Christwardana, Combination of physico-chemical entrapment and crosslinking of low activity laccase-based biocathode on carboxylated carbon nanotube for increasing biofuel cell performance, Enzyme and Microbial Technology 106 (2017) 1-10. https://doi.org/10.1016/j.enzmictec.2017.06.012

A. Boyo, O. Paul, I. Abdulsalami, O. Surukite, H. O. Boyo, H. Boyo, Application of Hibiscus sabdariffa and leaves of Azardirachta indica calyxes as sensitizers in dye-sensitized solar cells, International Journal of Engineering Research and Development 8 (2013) 38-42. https://www.ijerd.com/paper/vol8-issue12/F08123842.pdf

Published

11-12-2023 — Updated on 11-12-2023

How to Cite

Christwardana, M., Septevani, A. A., & Dayanti, D. (2023). Photo-bioelectrochemical cell anodes enhanced with titanium oxide, carbon nanotubes and chlorophyll-based catalyst on different supporting materials: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(2), 147–161. https://doi.org/10.5599/jese.2008

Issue

Section

Bioelectrochemistry