Palmyra palm flower biomass-derived activated porous carbon and its application as a supercapacitor electrode

Original scientific paper

  • Sofia Jeniffer Rajasekaran Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India https://orcid.org/0000-0003-4689-4620
  • Vimala Raghavan Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India https://orcid.org/0000-0001-9351-9407
Keywords: Biowaste products, chemical activation, potassium hydroxide, electrochemical measurements, specific capacitance, energy storage
Graphical Abstract

Abstract

Due to its abundant availability, eco-friendliness, and high sustainability, biomass-derived acti­vat­ed carbon has captured more attention in recent years. In this study, activated carbon was derived from Palmyra palm flowers (PPF) using a conventional chemical activation process and carbo­nization at different ambient temperatures, viz. 700, 800, and 900 °C. The carbonized PPF was chemically activated using 1 wt.% potassium hydroxide to increase the microporosity and specific surface. The experimental data were analyzed using X-ray diffractometer (XRD), scanning elec­tron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX), Raman spectr­oscopy and Fourier transform infrared spectroscopy (FT-IR). The nitrogen adsorption/de­sorption isotherm curve for activated carbon synthesized at the activation temperature of 900 °C indicated type IV with a hysteresis loop associated with mesopores formation and a specific surface area of 950 m2g-1. The supercapacitor electrodes made with PPF-derived carbon were evaluated for their electrochemical performance by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge measurements. In the aqueous electrolyte (3 M KOH), electro­chemical experiments showed that PPF-900 electrode has a specific capacitance of 155 F g-1 at 1 A g-1 and significant cyclic stability (97.3 % capacitance retention over 5000 cycles at 10 A g-1), while energy and power densities were estimated as 15.1 Wh kg-1 and 100.6 W kg-1. This study suggests that biowaste products could be transformed into activated carbon materials to improve the performance of energy storage materials, and it adheres to the 'waste to treasure' principle.

Downloads

Download data is not yet available.

References

X. Fan, B. Liu, J. Liu, J. Ding, X. Han, Y. Deng, X. Lv, Y. Xie, B. Chen, Transactions of Tianjin University 26(2) (2020) 92-103. https://doi.org/10.1007/s12209-019-00231-w.

C. Merlet, B. Rotenberg, P.A. Madden, P. Taberna, P. Simon, Y. Gogotsi, M. Salanne, Nature materials 11(4) (2012) 306-310. https://doi.org/10.1038/nmat3260.

C. Lekakou, O. Moudam, F. Markoulidis, T. Andrews, J.F. Watts, G.T. Reed, Journal of Nanotechnology 2011 (2011). https://doi.org/10.1155/2011/409382

Y. Yang, Y. Han, W. Jiang, Y. Zhang, Y. Xu, A.M. Ahmed, Applied Sciences 12(1) (2021) 354. https://doi.org/10.3390/app12010354

H. Liu, C. Xu, Y. Ren, D. Tang, C. Zhang, F. Li, X. Wei, C. Huo, X. Li, R. Zhang, ACS omega 5(42) (2020) 27032-27042. https://doi.org/10.1021/acsomega.0c02021

S.J. Rajasekaran, V. Raghavan, Diamond and Related Materials 109 (2020) 108038. https://doi.org/10.1016/j.diamond.2020.108038

P. Hong, X. Liu, X. Zhang, S. Peng, Z. Wang, Y. Yang, International Journal of Energy Research 44(2) (2020) 988-999. https://doi.org/10.1002/er.4970

Y. Zhang, S. Li, Z. Tang, Z. Song, J. Sun, Diamond and Related Materials 91 (2019) 119-126. https://doi.org/10.1016/j.diamond.2018.11.013

C. Quan, International Journal of Energy Research 44(2) (2020) 1218-1232. https://doi.org/10.1002/er.5017

C. Quan, N. Gao, International Journal of Energy Research 44(6) (2020) 4335-4351. https://doi.org/10.1002/er.5206

S. Ahmed, M. Parvaz, R. Johari, & M. J. M. R. E Rafat, Materials Research Express 5(4) (2018) 045601. http://dx.doi.org/10.1088/2053-1591/aab924

E. Yi, L. Teo, L. Muniandy, E. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, Electrochimica Acta 192 (2016) 110-119. https://doi.org/10.1016/j.electacta.2016.01.140

V. N. K. S. Kumar Nersu, B. R. Annepu, S. S. Babu Patcha, S. Singh Rajaputra, Journal of Electrochemical Science and Engineering 12(3) (2022) 451-462. https://doi.org/10.5599/jese.1310

J. Han, Y. Ping, J. Li, Z. Liu, B. Xiong, P. Fang, Diamond and Related Materials 96 (2019) 176-181. https://doi.org/10.1016/j.diamond.2019.05.014

Y. Gao, Q. Yue, B. Gao, A. Li, Science of the Total Environment 746 (2020) 141094. https://doi.org/10.1016/j.scitotenv.2020.141094

Z. Liu, Z. Zhu, J. Dai, Y. Yan, Chemistry Select 3(21) (2018) 5726-5732. https://doi.org/10.1002/slct.201800609

S.T. Neeli, H. Ramsurn, Carbon 134 (2018) 480-490. https://doi.org/10.1016/j.carbon.2018.03.079

C. Bora, S.K. Dolui, Polymer 53(4) (2012) 923-932. https://doi.org/10.1016/j.polymer.2011.12.054

J. Zhang, S. Song, J. Xue, P. Li, Z. Gao, Y. Li, International Journal of Electrochemical Science 13 (2018) 5204-5218. http://dx.doi.org/10.20964/2018.06.09

N. Mojoudi, N. Mirgha, M. Soleimani, H. Shariatmadari, C. Belver, J. Bedia, Scientific Reports 9(1) (2019) 1-12. https://www.nature.com/articles/s41598-019-55794-4

S. Nasir, M. Z Hussein, Z Zainal, N. A Yusof, & S. A Mohd Zobir, Energies 11(12) (2018) 3410. https://doi.org/10.3390/en11123410

T. Chen, N. Zhang, Z. Xu, X. Hu, Z. Ding, Environmental Science and Pollution Research 26(3) (2019) 2523-2530. https://doi.org/10.1007/s11356-018-3789-x

S. Kumar, R. Prakash, A. Alimuddin, J. Song, Journal of Central South University of Technology 17(6) (2010) 1139-1143. https://doi.org/10.1007/s11771-010-0609-y

A. Kumar, H.M. Jena, Results in Physics 6 (2016) 651-658. https://doi.org/10.1016/j.rinp.2016.09.012

P. Bai, S. Wei, X. Lou, L. Xu, RSC Advances 9(54) (2019) 31447-31459. https://doi.org/10.1039/C9RA06501F

A.E. Ismanto, S. Wang, F.E. Soetaredjo, S. Ismadji, Bioresource Technology 101(10) (2010) 3534-3540. https://doi.org/10.1016/j.biortech.2009.12.123

A.N. Grace, R. Ramachandran, M. Vinoba, Y. Choi, Electroanalysis 26(1) (2014) 199-208. https://doi.org/10.1002/elan.201300262

A. Xu, Y Weng, & R Zhao, Materials 13(5) (2020) 1179. https://doi.org/10.3390/ma13051179

A. Bello, F. Barzegar, D. Momodu, RSC Advances 4(73) (2014) 39066-39072. https://doi.org/10.1039/C4RA05425C

C. Liu, W. Dong, G. Cao, J. Song, L. Liu, Journal of the Electrochemical Society 155(1) (2007) F1. http://dx.doi.org/10.1149/1.2799683

S. Sopčic, D. Antonić, Z. Mandić, K. Kvastek, V. Horvat-Radošević Journal of Electrochemical Science and Engineering 8(2) (2018) 183-195. https://doi.org/10.5599/jese.536

F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan, Npj Flexible Electronics 4(1) (2020) 1-16. https://doi.org/10.1038/s41528-020-00093-6

J. Jiang, L. Zhang, X. Wang, N. Holm, K. Rajagopalan, F. Chen, S. Ma, Electrochimica Acta 113 (2013) 481-489. https://doi.org/10.1016/j.electacta.2013.09.121

S. Ahmed, A. Ahmed, M. Rafat, Journal of Saudi Chemical Society 22(8) (2018) 993-1002. https://doi.org/10.1016/j.jscs.2018.03.002

H. Aripin, L.A. Lestari, The Open Materials Science Journal 4(1) (2010). http://dx.doi.org/10.2174/1874088X01004010117

V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, The Journal of Physical Chemistry C 111(20) (2007) 7527-7531. https://doi.org/10.1021/jp067009t

M.R. Jisha, Y. Ju, J. Sun, K. Suk, T.P. Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N.G. Renganathan, A.M. Stephan, Materials Chemistry and Physics 115(1) (2009) 33-39. https://doi.org/10.1016/j.matchemphys.2008.11.010

H. Chen, Y. Guo, F. Wang, G. Wang, P. Qi, X. Guo, B. Dai, New Carbon Materials 32(6) (2017) 592-599. https://doi.org/10.1016/S1872-5805(17)60140-9

M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan, N. Wu, ACS Sustainable Chemistry & Engineering 2(7) (2014) 1592-1598. https://doi.org/10.1021/sc500336h

Published
25-05-2022
Section
Electrochemical Engineering