Impact of the final thermal sealing of combined zinc/cerium oxide protective coating primers formed on low carbon steel
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1297Keywords:
Zn-galvanization, cerium oxide primer layers (CeOPL), thermal sealing, barrier properties, surface analysisAbstract
The final sealing possesses a proven beneficial effect on the protective properties of anodic oxide films on aluminum. In this sense, the present research is devoted to the evaluation of the impact of this procedure on the barrier ability of combined Zn/Ce oxide layers deposited on low carbon steel samples. For this purpose, four samples were submitted to galvanic zinc deposition, followed by spontaneous formation of cerium oxide primer layer (CeOPL). Afterwards, two of the samples underwent thermal sealing in boiling water in order to enhance their barrier ability. Its evaluation was performed by two electrochemical methods: electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 hours of exposure to a diluted model corrosive medium (MCM). Other instrumental methods were used in order to describe the effect of this final procedure on the color characteristics and hydrophobicity of the films. The results were collected from multiple tests, followed by statistical data treatment. In addition, the surfaces of the obtained films were submitted to direct observation by scanning electron microscopy (SEM), coupled with energy dispersion X-ray (EDX). Their composition was determined by means of X-ray Photoelectron Spectroscopy (XPS). The acquired data have revealed a detrimental effect of the final sealing in boiling water. It was expressed by the loss of the barrier properties of the Zn/CeOPL films, combined with additional decolorization and hydrophilization. Finally, the mechanism of this detrimental effect was determined by further SEM, EDX and XPS analyses.
Downloads
References
A. El Fazazi, M. Ouakki, M. Cherkaoui, Journal of Bio- and Tribo-Corrosion 7 (2021) 58. https://doi.org/10.1007/s40735-021-00482-y
G. Zhao, W. Zhang M. Zhao, International Journal of Electrochemical Science 17 (2022) 220134. https://doi.org/10.20964/2022.01.38
N. Boshkova, N. Tabakova, G. Atanassova, N. Boshkov, Coatings 9 (2019) 487. https://doi.org/10.3390/coatings9080487
M. Chotirach, P. Rattanawaleedirojn, Y. Boonyongmaneerat, R. Chanajaree, K. Schmid, M. Metzner, N. Rodthongkum, Materials Chemistry and Physics 277 (2022) 125567. https://doi.org/10.1016/j.matchemphys.2021.125567
F. Gao, J. Mu, Z. Bi, S. Wang, Z. Li, Progress in Organic Coatings 151 (2021) 106071. https://doi.org/10.1016/j.porgcoat.2020.106071
E. A. Alvarenga, J. G. Moreira, V. T. L. Buono, V. F. C. Lins, Materials and Corrosion 61 (2010) 421-427. https://doi.org/10.1002/maco.200905360
A. Medjaldi, A. Himour, M. Bououdina, S. Ouchenane, A. Gharbi, Metallography, Micro-structure and Analysis 10 (2021) 208-218. https://doi.org/10.1007/s13632-021-00728-8
P. S. Basak, IOSR Journal of Applied Chemistry 14 (2021) 10-15. https://doi.org/10.9790/5736-1409011015
K. Jyotheender, M. Kumar, C. Srivastava, Surface and Coatings Technology 423 (2021) 127594. https://doi.org/10.1016/j.surfcoat.2021.127594
K. Jyotheender, C. Srivastava, Microscopy and Microanalysis 27 (2021) 2498-2499. https://doi.org/10.1017/S1431927621008916
M. Ohba, T. Scarazzato, D. C. R. Espinosa, Z. Panossian, Electrochimica Acta 309 (2019) 86-103. https://doi.org/10.1016/j.electacta.2019.04.074
L. Fuller, J. Martin, Y. Ma, S. King, S. Sen, Chemistry Select 6 (2021) 5426-5434. https://doi.org/10.1002/slct.202101193
S. Kireev, A. Yangurazova, S. Kireeva, IOP Conference Series Materials Science and Engineering 862 (2020) 062024. https://doi.org/10.1088/1757-899X/862/6/062024
J. Xu, S. S. Xin, P. H. Han, R. Y. Ma, M. C. Li, Materials and Corrosion 64 (2013) 619-624. https://doi.org/10.1002/maco.201206752
C. Wang, F. Jiang, F. Wang, Corrosion Science 46 (2004) 75-89. https://doi.org/10.1016/S0010-938X(03)00135-5
M. R. Majdi, I. Danaee, S. S. Afghahi, Materials Research 20 (2017) 445-451. https://doi.org/10.1590/1980-5373-MR-2016-0661
J. Creus, F. Brezault, C. Rebere, M. Gadouleau, Surface and Coatings Technology 200 (2006) 4636-4645. https://doi.org/10.1016/j.surfcoat.2005.04.027
B. Ramezanzadeh, H. Vakili, R. Amini, Journal of Industrial and Engineering Chemistry 30 (2015) 225-233. https://doi.org/10.1016/j.jiec.2015.05.026
H. Hasannejad, T. Shahrabi, M. Jafarian, Materials and Corrosion 64 (2013) 1104-1113. https://doi.org/10.1002/maco.201106484
X. Jiang, R. Guo, S. Jiang, Journal of Magnesium and Alloys 4 (2016) 230-241. https://doi.org/10.1016/j.jma.2016.06.003
N. Boshkov, Surface and Coatings Technology 172 (2003) 217-226. https://doi.org/10.1016/S0257-8972(03)00463-8
D. S. Rodríguez, S. Kozhukharov, M. Machkova, V. Kozhukharov, Bulgarian Chemical Communications 45-A (2013) 24-32. http://www.bcc.bas.bg/bcc_volumes/Volume_45_Special_A_2013/BCC-45-SE-A-24-32.pdf.
S. Kozhukharov, J. A. P. Ayuso, D. S. Rodríguez, O. F. Acuña, M. Machkova, V. Kozhukharov, Journal of Chemical Technology and Metallurgy 48 (2013) 296-307. https://dl.uctm.edu/journal/node/j2013-3/11-Stefan_Kojukharov-296-307.pdf
S. V. Kozhukharov, Ch. A. Girginov, Classical and Modern Methods for Corrosion Impact Rate Determination for Aluminium and Strengthened Aircraft Alloys. Fundamentals and Practical Applications, in Phenomena and Theories in Corrosion Science. Methods of Prevention, A. Gergely Ed., NOVA Sci. Publ., New York, USA, 2019, p. 3-150 ISBN 978-153-615253-1.
S. Kozhukharov, Ch. Girginov, D. Kiradzhiyska, A. Tsanev, G. Avdeev, Journal of Electroche-mical Science and Engineering 10 (2020) 317-334. https://doi.org/10.5599/jese.820
M. Fairchild, Color Appearance Models, in Color Appearance Models, John Wiley and Sons, 2019, p. 199-212. https://doi.org/10.1002/9781118653128
E. A. Matter, S. Kozhukharov, M. Machkova, V. Kozhukharov, Journal of Chemical Technology and Metallurgy 50 (2015) 52-64. https://dl.uctm.edu/journal/node/j2015-1/8_Stefan_Kojuharov_52-64.pdf
K. Ignatova, S. Kozhukharov, G. Avdeev, I. Piroeva, Bulgarian Chemical Communications 50-A (2018) 61-69. http://www.bcc.bas.bg/bcc_volumes/Volume_50_Special_A_2018/BCC-50-A-2018-61-69-Ignatova.pdf
P. Atanasova, S. Kozhukharov, M. Milanes, Annual Proceedings of the University of Rousse 54 (2015) 42-46. http://conf.uni-ruse.bg/bg/docs/cp15/10.1/10.1-8.pdf
F. Yu, W. F. Li, X. P. Chen, G. G. Zhang, Materials Research Innovations 19 (2015) S2-28-S2-34. https://doi.org/10.1179/1432891715Z.0000000001310
A. Conde, M. A. Arenas, A. de Frutos, J. de Damborenea, Electrochimica Acta 53 (2008) 7760-7768. https://doi.org/10.1016/j.electacta.2008.05.039
W. G. Fahrenholtz, M. J. O'Keefe, H. Zhou, J. T. Grant, Surface and Coatings Technology 155 (2002) 208-213. https://doi.org/10.1016/S0257-8972(02)00062-2
D. K. Heller, W. G. Fahrenholtz, M. J. O’Keefe, Corrosion Science 52 (2010) 360-368. https://doi.org/10.1016/j.corsci.2009.09.023
G. Tsaneva, V. Kozhukharov, S. Kozhukharov, M. Ivanova, J. Gerwann, M. Schem, T. Schmidt, Journal of the University of Chemical Technology and Metallurgy 43 (2008) 231-238. https://dl.uctm.edu/journal/node/j2008-2/9_Kojukharov_231.pdf
S. V. Kozhukharov, Advanced Multifunctional Corrosion Protective Coating Systems for Light-Weight Aircraft Alloys - Actual Trends and Challenges, in Thin Film Processes - Artifacts on Surface Phenomena and Technological Facets, J. Thirumalai Ed., IntechOpen, 2017, p. 179-210. https://doi.org/10.5772/64990
A. Pardo, S. Feliú Jr., M.C. Merino, R. Arrabal, E. Matykina, Applied Surface Science 254 (2007) 586-595. https://doi.org/10.1016/j.apsusc.2007.06.036
E. Paparazzo, Journal of Physics: Condensed Matter 30 (2018) 343003. https://doi.org/10.1088/1361-648X/aad248
C. Barth, C. Laffon, R. Olbrich, A. Ranguis, Ph. Parent, M. Reichling, Scientific Reports 6 (2016) 21165. https://doi.org/10.1038/srep21165
F. Solís-Pomar, E. Martínez-Guerra, M. Meléndrez-Castro, E. G. Pérez-Tijerina, Journal of Na¬no Research 14 (2011) 145-154. https://doi.org/10.4028/www.scientific.net/jnanor.14.145
S. J. An, J. Li, C. Daniel, D. L. Wood III, Journal of The Electrochemical Society 166 (2019) A1121-A1126. https://doi.org/10.1149/2.0591906jes
R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, Y. Al-Douri, Ceramics International 39 (2013) 2283-2292. https://doi.org/10.1016/j.ceramint.2012.08.075
H. Ma, Y. Tan, Z. Liu, J. Wei, R. Xiong, New Journal of Chemistry 45 (2021) 13860-13868. https://doi.org/10.1039/D1NJ00973G
A. Furlan, J. Lu, L. Hultman, U. Jansson, M. Magnuson, Journal of Physics: Condensed Matter 26 (2014) 415501. https://doi.org/10.1088/0953-8984/26/41/415501
V. Shutthanandan, M. Nandasiri, J. Zheng, M. H. Engelhard, W. Xu, S. Thevuthasan, V. Murugesan, Journal of Electron Spectroscopy and Related Phenomena 231 (2019) 2-10. https://doi.org/10.1016/j.elspec.2018.05.005
X. Chen, X. Wang, D. Fang, Fullerenes, Nanotubes and Carbon Nanostructures 28 (2020) 1048-1058. https://doi.org/10.1080/1536383X.2020.1794851
F. Brau, S. Thouvenel-Romans, O. Steinbock, S. Cardoso, J. Cartwright, Soft Matter 15 (2019) 803-812. https://doi.org/10.1039/C8SM01928B
V. F. C. Lins, R. M. V. Paranhos, E. A. Alvarenga, Journal of Materials Science 42 (2007) 5094-5104. https://doi.org/10.1007/s10853-006-0554-1
D. Spanoudaki, E. Pavlidou, D. Sazou, ChemSystemsChem 3 (2021) e2000054. https://doi.org/10.1002/syst.202000054
K. Aramaki, Corrosion Science 43 (2001) 1573-1588. https://doi.org/10.1016/S0010-938X(00)00144-X
F. H. Scholes, C. Soste, A. E. Hughes, S. G. Hardin, P. R. Curtis, Applied Surface Science 253 (2006) 1770-1780. https://doi.org/10.1016/j.apsusc.2006.03.010
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.