Tunable electrochemical properties of polyaniline/CuO/BaTiO3 nanocomposites for supercapacitor application

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2998

Keywords:

Dielectric, ferroelectric ceramics, polyaniline matrix, energy storage, specific capacitance

Abstract

Revolutionizing energy storage demands innovative strategies that transcend the conven­ti­onal boundaries of electrode design. Here, we unveil a powerful approach that harnesses the synergistic interplay between dielectric and conductive nanophases to unlock unprecedented charge storage performance in polymeric supercapacitors. By individually synthesizing copper oxide (CuO) and barium titanate (BaTiO3) nanoparticles and strategically embedding them into a polyaniline (PANI) matrix, we engineered two finely tuned ternary nano­composites: PCB5 (10 wt.% CuO, 5 wt.% BaTiO3) and PCB10 (5 wt.% CuO, 10 wt.% BaTiO3). Advanced structural and spectroscopic analyses (X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Ramanspectroscopy) confirmed the successful integration of the nanophases, while dielectric studies revealed distinct variations in dielectric constant and interfacial polarization behaviour depending on nanoparticle ratios. Among the composites, PCB5 showed the most balanced electrochemical performance, with a specific capacitance of 271.67 F g-¹, outperforming pristine PANI and its BaTiO3-rich counterpart. Electrochemical impedance spectroscopy further confirmed the low series and charge-transfer resistances of the PCB5 composite sample, reflecting its efficient ion/electron transport pathways. Furthermore, BET analysis showed an increased surface area (31.37 m² g-¹) compared to pristine PANI (24.08 m² g-¹), providing additional electroactive interfaces for charge accumulation. These findings establish, for the first time, a dielectric-conductive co-engineering paradigm in PANI nanocomposites, where carefully optimized filler ratios act as a dual-function booster of both dielectric constant and electrochemical kinetics. This extraordinary synergy paves the way for transformative next-generation high-energy, high-power supercapacitors with tunable multifunctionality.

Downloads

Download data is not yet available.

References

[1] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials 7 (2008) 845-854. https://doi.org/10.1038/nmat2297 DOI: https://doi.org/10.1038/nmat2297

[2] B. E. Conway, Capacitance Behavior of Films of Conducting, Electrochemically Reactive Polymers, in: Electrochemical Supercapacitors, Springer, Boston, MA, USA, 1999, p. 299-334. https://doi.org/10.1007/978-1-4757-3058-6_12 DOI: https://doi.org/10.1007/978-1-4757-3058-6_12

[3] G. A. Snook, P. Kao, A.S . Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources 196 (2011) 1-12. https://doi.org/10.1016/j.jpowsour.2010.06.084 DOI: https://doi.org/10.1016/j.jpowsour.2010.06.084

[4] S. Reddy, B. E. Kumara Swamy, H. Jayadevappa, CuO nanoparticle sensor for the electrochemical determination of dopamine, Electrochimica Acta 61 (2012) 78-86. https://doi.org/10.1016/j.electacta.2011.11.091 DOI: https://doi.org/10.1016/j.electacta.2011.11.091

[5] X. Zhu, J. Wang, Z. Zhang, J. Zhu, S. Zhou, Z. Liu, N. Ming, Atomic‐Scale Characterization of Barium Titanate Powders Formed by the Hydrothermal Process, Journal of the American Ceramic Society 91 (2008) 1002-1008. https://doi.org/10.1111/j.1551-2916.2007.02227.x DOI: https://doi.org/10.1111/j.1551-2916.2007.02227.x

[6] K. Ahmed, F. Kanwal, S. M. Ramay, S. Atiq, R. Rehman, S. Ali, N. S. Alzayed, Synthesis and characterization of BaTiO3/polypyrrole composites with exceptional dielectric behaviour, Polymers 10 (2018) 1273. https://doi.org/10.3390/polym10111273 DOI: https://doi.org/10.3390/polym10111273

[7] N. T. Nagaraj, J. Sannappa, M. Pari, V. N. Krishnanaik, R. Shet, M. Rajashekar, Polyaniline Ingrained Copper Oxide (PANI/CuO) Nanocomposites for Effective Electromagnetic Interference Shielding and Their Sensitive Detection of Dopamine, Analytical and Bioanalytical Electrochemistry 16 (2024) 628-642. https://www.doi.org/10.22034/abec.2024.714686

[8] N. A. Abdallah, S. A. Ahmed, M. Almaghrabi, Y. M. Alahmadi, Utilization of a TiO2-CuO Bimetallic/Polyaniline Nanocomposite as a Transducer in a Solid Contact Potentiometric Sensor for the Determination of Vildagliptin, Polymers 15 (2023) 3991. https://doi.org/10.3390/polym15193991 DOI: https://doi.org/10.3390/polym15193991

[9] L. Feng, R. Wang, Y. Zhang, S. Ji, Y. Chuan, W. Zhang, B. Liu, C. Yuan, C. Du, In situ XRD observation of CuO anode phase conversion in lithium-ion batteries, Journal of Material Science 54 (2019) 1520-1528. https://doi.org/10.1007/s10853-018-2885-0 DOI: https://doi.org/10.1007/s10853-018-2885-0

[10] M. Wu, J. Long, G. Wang, A. Huang, Y. Luo, S. Feng, R. Xu, Hydrothermal Synthesis of Tetragonal Bari¬um Titanate from Barium Hydroxide and Titanium Dioxide Under Moderate Conditions, Journal of the American Ceramic Society 82 (1999) 3254-3256. https://doi.org/10.1111/j.1151-2916.1999.tb02235.x DOI: https://doi.org/10.1111/j.1151-2916.1999.tb02235.x

[11] M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method, Superlattices and Microstructures 85 (2015) 7-23. https://doi.org/10.1016/j.spmi.2015.05.007 DOI: https://doi.org/10.1016/j.spmi.2015.05.007

[12] J. Xue, Q. Yang, R. Guan, Q. Shen, X. Liu, H. Jia, Q. Li, High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors, Materials Chemistry and Physics 256 (2020) 123591. https://doi.org/10.1016/j.matchemphys.2020.123591 DOI: https://doi.org/10.1016/j.matchemphys.2020.123591

[13] S. Rajkumar, J. Christy Ezhilarasi, P. Saranya, J. Princy Merlin, Fabrication of CoWO4/PANI composite as electrode material for energy storage applications, Journal of Physics and Chemistry of Solids 162 (2022) 110500. https://doi.org/10.1016/j.jpcs.2021.110500 DOI: https://doi.org/10.1016/j.jpcs.2021.110500

[14] S. Abirami, E. Kumar, A review on metal oxide-doped polyaniline nanocomposites, Journal of Material Science 59 (2024) 14141-14171. https://doi.org/10.1007/s10853-024-10020-z DOI: https://doi.org/10.1007/s10853-024-10020-z

[15] C. Yin, L. Gao, F. Zhou, G. Duan, Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing, Polymers 9 (2017) 0544. https://doi.org/10.3390/polym9100544 DOI: https://doi.org/10.3390/polym9100544

[16] Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, Raman scattering studies on nanocrystalline BaTiO3 Part I—isolated particles and aggregates, Journal of Raman Spectroscopy 38 (2007) 1288-1299 https://doi.org/10.1002/jrs.1764 DOI: https://doi.org/10.1002/jrs.1764

[17] K. Anju, K. Roopitha, L.K. Alexander, BaTiO3 SERS substrates for Dimethyl phthalate detection, Materials Today: Proceedings 46 (2021) 3044-3050. https://doi.org/10.1016/j.matpr.2021.01.843 DOI: https://doi.org/10.1016/j.matpr.2021.01.843

[18] S. Chen, X. Lv, X. Han, H. Luo, C. R. Bowen, D. Zhang, Significantly improved energy density of BaTiO3 nanocomposites by accurate interfacial tailoring using a novel rigid-fluoro-polymer, Polymer Chemistry 9 (2018) 548-557. https://doi.org/10.1039/C7PY01914A DOI: https://doi.org/10.1039/C7PY01914A

[19] S. Guha, D. Peebles, J. Terence Wieting, Raman and infrared studies of cupric oxide, Bulletin of Materials Science 14 (1991) 539-543. https://doi.org/10.1007/BF02744682 DOI: https://doi.org/10.1007/BF02744682

[20] T. Machappa, M. V. N. Ambika Prasad, AC conductivity and dielectric behavior of polyaniline/sodium metavenadate (PANI/NaVO3) composites, Physica B 404 (2009) 4168-4172. https://doi.org/10.1016/j.physb.2009.07.194 DOI: https://doi.org/10.1016/j.physb.2009.07.194

[21] C. M. B. Krishna, M. Challa, R. Gopal, B. M. Naghabhushana, P. R. Deepthi, International Conference on Advances in Materials, Ceramics and Engineering Sciences (AMCES-2020), Investigation of the dielectric properties of hybrid composite derived from PANI-CuO nano buds, AIP Conference Proceedings 2399 (2023) 020017. https://doi.org/10.1063/5.0132547 DOI: https://doi.org/10.1063/5.0132547

[22] A. Khan, A. Habib, A. Afzal, High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles, Beilstein Journal of Nanotechnology 11 (2020) 1190-1197. https://doi.org/10.3762/bjnano.11.103 DOI: https://doi.org/10.3762/bjnano.11.103

[23] K. F. Qasim, M. A. Mousa, Effect of Oxidizer on PANI for Producing BaTiO3@PANI Perovskite Composites and Their Electrical and Electrochemical Properties, Journal of Inorganic and Organo-metallic Polymers and Materials 32 (2022) 3093-3105. https://doi.org/10.1007/s10904-022-02335-8 DOI: https://doi.org/10.1007/s10904-022-02335-8

[24] N. Maruthi, M. Faisal, N. Raghavendra, B.P. Prasanna, S.R. Manohara, M. Revanasiddappa, Anticorrosive polyaniline-coated copper oxide (PANI/CuO) nanocomposites with tunable electrical properties for broadband electromagnetic interference shielding, Colloids and Surfaces A 621 (2021) 126611. https://doi.org/10.1016/j.colsurfa.2021.126611 DOI: https://doi.org/10.1016/j.colsurfa.2021.126611

[25] S. Bousalem, F. Z. Zeggai, H. Baltach, A. Benyoucef, Physical and electrochemical investigations on hybrid materials synthesized by polyaniline with various amounts of ZnO nanoparticle, Chemical Physics Letters 741 (2020) 137095. https://doi.org/10.1016/j.cplett.2020.137095 DOI: https://doi.org/10.1016/j.cplett.2020.137095

[26] K. Pandiselvi, S. Thambidurai, Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor, Ionics 20 (2014) 551-561. https://doi.org/10.1007/s11581-013-1020-0 DOI: https://doi.org/10.1007/s11581-013-1020-0

[27] L. Zhang, H. Gong, Improvement in flexibility and volumetric performance for supercapacitor application and the effect of Ni-Fe ratio on electrode behaviour, Journal of Materials Chemistry A 3 (2015) 7607. https://doi.org/10.1039/c4ta06649a DOI: https://doi.org/10.1039/C4TA06649A

[28] Y. Belazougui, A. Dib, T. Hadjersi, R. Maizia, A. Thomas, S. Martemianov, Exploring Impact of Various Operating Parameters on the Specific Capacitance at the Glassy Carbon/H2SO4 Interface: A Comparative Analysis Using Electrochemical Characterization, ChemistrySelect 9 (2024) e202400750. https://doi.org/10.1002/slct.202400750 DOI: https://doi.org/10.1002/slct.202400750

[29] S. S. Shah, Md.A. Aziz, Properties of Electrode Materials and Electrolytes in Supercapacitor Techno-logy, Journal of Chemistry and Environment 3 (2024) 1-45. https://doi.org/10.56946/jce.v3i1.309 DOI: https://doi.org/10.56946/jce.v3i1.309

[30] M. Z. Iqbal, S. Zakar, M. Tayyab, S. S. Haider, M. Alzaid, A. M. Afzal, S. Aftas, Scrutinizing the charge storage mechanism in SrO based composites for asymmetric supercapacitors by diffusion-controlled process, Applied Nanoscience 10 (2020) 3999-4011. https://doi.org/10.1007/s13204-020-01542-4 DOI: https://doi.org/10.1007/s13204-020-01542-4

[31] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications in Modern Aspects of Electrochemistry, Vol 32, B. E. Conway, J. O'M. Bockris, R. E. White Eds., Kluwer Academic / Plenum Publishers, New York, USA, 1999, p. 143-248. https://doi.org/10.1007/0-306-46916-2_2 DOI: https://doi.org/10.1007/0-306-46916-2_2

[32] M. Jaroniec, M. Kruk, A. Sayari, Adsorption methods for characterization of surface and structural properties of mesoporous molecular sieves, Studies in Surface Science and Catalysis 117 (1998) 325-332. https://doi.org/10.1016/S0167-2991(98)81008-2 DOI: https://doi.org/10.1016/S0167-2991(98)81008-2

[33] X. Zhang, S. Wei, N. Haldolaarachchige, H. A. Colorado, Z. Luo, D. P. Young, Z. Guo, Magnetoresistive conductive polyaniline-barium titanate nanocomposites with negative permittivity, The Journal of Physical Chemistry C 116 (2012) 15731. 15740. https://doi.org/10.1021/jp303226u DOI: https://doi.org/10.1021/jp303226u

Published

04-11-2025

Issue

Section

Batteries and supercapacitors

How to Cite

Tunable electrochemical properties of polyaniline/CuO/BaTiO3 nanocomposites for supercapacitor application: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 2998. https://doi.org/10.5599/jese.2998

Funding data

Similar Articles

11-20 of 209

You may also start an advanced similarity search for this article.