Flow batteries with solid energy boosters

Review Paper

  • Yuriy Tolmachev 1Department of Civil and Environmental Engineering, University of Massachusetts, 01002 USA and Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 Russia https://orcid.org/0000-0001-6705-6058
  • Svetlana V. Starodubceva Dialog-Kontrakt, Moscow 119988 Russia
Keywords: Redox batteries, redox mediators, redox-targeted solids, redox-assisted flow batteries, redox -mediating fluid, solid electroactive materials
Graphical Abstract

Abstract

Adding solid electroactive materials as energy boosters to flow battery tanks provides a path to electrical energy storing systems with unprecedently high specific energy and specific power, that can solve the needs of both automotive and stationary energy storage markets. This work reviews the physical and chemical principles behind this new class of flow batteries, the history of this technology, and the most promising research directions.

Downloads

Download data is not yet available.

References

P. Alotto, M. Guarnieri, F. Moro, Redox Flow Batteries for the Storage of Renewable Energy: A Review, Renewable and Sustainable Energy Reviews 29 (2014) 325-335. https://doi.org/10.1016/j.rser.2013.08.001

Y. V. Tolmachev, Hydrogen-Halogen Electrochemical Cells: A Review of Applications and Technologies, Russian Journal of Electrochemistry 50 (2014) 301-316. https://doi.org/10.1134/s1023193513120069

F. Pan, Q. Wang, Redox Species of Redox Flow Batteries: A Review, Molecules 20 (2015) 20499-20517. https://doi.org/10.3390/molecules201119711

R. Ye, D. Henkensmeier, S. J. Yoon, Z. Huang, D. K. Kim, Z. Chang, S. Kim, R. Chen, Redox Flow Batteries for Energy Storage: A Technology Review, Journal of Electrochemical Energy Conversion and Storage 15 (2018) 010801. https://doi.org/10.1115/1.4037248

Y. Zhenh, Y. Li, Redox Flow Battery, in Studies in Surface Science and Catalysis, Elsevier Inc., 2019, pp. 385-413 01672991 (ISSN) https://doi.org/10.1016/b978-0-444-64337-7.00020-3.

G. Tomazic, M. Skyllas-Kazacos, Chapter 17-Redox Flow Batteries, Electrochemical Energy Storage for Renewable Sources and Grid Balancing (2015) 309-336. https://doi.org/10.1016/b978-0-444-62616-5.00017-6

Z. Qi, G. M. Koenig Jr., Review Article: Flow Battery Systems with Solid Electroactive Materials, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 35 (2017) 040801. https://doi.org/10.1116/1.4983210

M. M. Petrov, A. D. Modestov, D. V. Konev, E. A. Antipov, P. A. Loktionov, P. D. Picugov, N. V. Kartasova, A. T. Glazkov, L. Z. Abunaeva, V. N. Andreev, M. A. Vorotyntsev, Redox Flow Batteries: Role in Modern Electric Power Industry and Comparative Characteristics of the Main Types, Russian Chemical Reviews 90 (2021) 677-702. https://doi.org/10.1070/RCR4987

Y. V. Tolmachev, Journal of Electrochemical Science and Engineering (2022) submittted.

J. Yu, L. Fan, R. Yan, M. Zhou, Q.Wang, Redox Targeting-Based Aqueous Redox Flow Lithium Battery, ACS Energy Letters 3 (2018) 2314-2320. https://doi.org/10.1021/acsenergylett.8b01420

C. Warde, B. Brummet, R. Clubb et al., Development of the Zinc-Chloride Battery for Utility Applications. Interim Report, May 1980 Energy Development Associates 1980.

J. Fricke, Zinc Chloride Batteries and Redox Cells-Electrochemical Storage Systems for Cars and Regenerative Energy Sources, Physik Unserer Zeit 11 (1980) 157-9. https://doi.org/10.1002/piuz.19800110506

Energy Development Associates Madison Heights, MI 48071 (U.S.A.), Zinc-Chloride Battery Development Project, Journal of Power Sources 5 (1980) 352-353. https://doi.org/10.1016/0378-7753(80)80040-1.

Factory Mutual Research Corporation, Norwood, MA 01062 (U.S.A.), A Hazard Assessment of Zinc-Chlorine Electric Vehicle Batteries, Journal of Power Sources 5 (1980) 398-399. https://doi.org/10.1016/0378-7753(80)80071-1

Development of the Zinc-Chlorine Battery for Utility Applications, Interim Report, EM-1051, Parts 4-Appendixes Research Project 226-3, Energy Development Associates A Gulf + Western Company 1979.

M. Futamata, S. Takahashi, Current Status of Battery Development for Vehicular Application. 4. Zinc-Chlorine Battery, Osaka Kogyo Gijutsu Shikensho Kiho 37 (1986) 229-39. CAPLUS AN 1987:87549 .

M. E. C. Ohajianya A. C., Amakom C. M., Akujor, Design and Construction of a Membraneless Zinc-Chlorine Electric Cell, Journal of Sustainable Energy 11(1) (2020)6-8.

Y. V. Tolmachev, A. Piatkivskyi, V. V. Ryzhov, D. V. Konev, M. A. Vorotyntsev, Energy Cycle Based on a High Specific Energy Aqueous Flow Battery and Its Potential Use for Fully Electric Vehicles and for Direct Solar-to-Chemical Energy Conversion, Journal of Solid State Electrochemistry 19 (2015) 2711-2722. https://doi.org/10.1007/s10008-015-2805-z

A. D. Modestov, D. V. Konev, O. V. Tripachev, A. E. Antipov, Y. V. Tolmachev, M. A. Vorotyntsev, A Hydrogen-Bromate Flow Battery for Air-Deficient Environments, Energy Technology 6 (2018) 242-245. https://doi.org/10.1002/ente.201700447

T. F. O'Brien, T. V. Bommaraju, F. Hine, Handbook of Chlor-Alkali Technology, Springer, New York, 2005, ISBN:0306486237

K. M. Beers, D. T. Hallinan Jr., X. Wang, J. A. Pople, N. P. Balsara, Counterion Condensation in Nafion, Macromolecules 44 (2011) 8866-8870. https://doi.org/10.1021/ma2015084

J. Kamcev, B. D. Freeman, Charged Polymer Membranes for Environmental/Energy Applications, Annual Review of Chemical and Biomolecular Engineering 7 (2016) 111-133. https://doi.org/10.1146/annurev-chembioeng-080615-033533

J. Kamcev, M. Galizia, F. M. Benedetti, E.-S. Jang, D. R. Paul, B. D. Freeman, G. S. Manning, Partitioning of Mobile Ions between Ion Exchange Polymers and Aqueous Salt Solutions: Importance of Counter-Ion Condensation, Physical Chemistry Chemical Physics 18 (2016) 6021-6031. https://doi.org/10.1039/c5cp06747b

A. R. Crothers, R. M. Darling, A. Kusoglu, C. J. Radke, A. Z. Weber, Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part I. Thermodynamic Model and Validation, Journal of The Electrochemical Society 167 (2020) 013547. https://doi.org/10.1149/1945-7111/ab6723

D. Kitto, J. Kamcev, Manning Condensation in Ion Exchange Membranes: A Review on Ion Partitioning and Diffusion Models, Journal of Polymer Science (2022)1-45. https://doi.org/10.1002/pol.20210810

K. Oh, M. Moazzam, G. Gwak, H. Ju, Water Crossover Phenomena in All-Vanadium Redox Flow Batteries, Electrochimica Acta 297 (2019) 101-111. https://doi.org/10.1016/j.electacta.2018.11.151

C. Sun, H. Zhang, Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System, ChemSuSchem 15 (2022) e202101798. https://doi.org/10.1002/cssc.202101798

V. V. Sentyurin, O. A. Levitskiy, T. V. Magdesieva, Molecular Design of Ambipolar Redox-Active Molecules II: Closed-Shell Systems, Current Opinion in Electrochemistry 24 (2020) 6-14. https://doi.org/10.1016/j.coelec.2020.05.005

V. V. Sentyurin, O. A. Levitskiy, T. V. Magdesieva, Molecular Design of Ambipolar Redox-Active Open-Shell Molecules: Principles and Implementations, Current Opinion in Electrochemistry 24 (2020) 15-23. https://doi.org/10.1016/j.coelec.2020.05.006

R. P. Fornari, M. Mesta, J. Hjelm, T. Vegge, P. de Silva, Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries, ACS Materials Letters 2 (2020) 239-246. https://doi.org/10.1021/acsmaterialslett.0c00028

G. Sikukuu Nambafu, Organic Molecules as Bifunctional Electroactive Materials for Symmetric Redox Flow Batteries: A Mini Review, Electrochemistry Communications 127 (2021) 107052. https://doi.org/10.1016/j.elecom.2021.107052

Y. Shiokawa, T. Yamamura, K. Shirasaki, Energy Efficiency of an Uranium Redox-Flow Battery Evaluated by the Butler-Volmer Equation, Journal of the Physical Society of Japan 75 (2006) 137-142. https://doi.org/10.1143/jpsjs.75s.137

T. Yamamura, N. Watanabe, Y. Shiokawa, Energy Efficiency of Neptunium Redox Battery in Comparison with Vanadium Battery, Proceedings of the Rare Earths'04 in Nara, Japan 408-412 (2006) 1260-1266. https://doi.org/10.1016/j.jallcom.2005.04.174

C. H. Bae, E. P. L. Roberts, M. H. Chakrabarti, M. Saleem, All-Chromium Redox Flow Battery for Renewable Energy Storage, International Journal of Green Energy 8 (2011) 248-264. https://doi.org/10.1080/15435075.2010.549598

C. L. Peake, A. J. Kibler, G. N. Newton, D. A. Walsh, Organic-Inorganic Hybrid Polyoxotungstates as Configurable Charge Carriers for High Energy Redox Flow Batteries, ACS Applied Energy Materials 4 (2021) 8765-8773. https://doi.org/10.1021/acsaem.1c00800

L. E. Vangelder, T. R. Cook, E. M. Matson, Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries, Comments on Inorganic Chemistry 39 (2019) 51-89. https://doi.org/10.1080/02603594.2019.1587612

J. Friedl, M. A. Lebedeva, K. Porfyrakis, U. Stimming, T. W. Chamberlain, All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries, Journal of the American Chemical Society 140 (2018) 401-405. https://doi.org/10.1021/jacs.7b11041

J. L. Barton, A. I. Wixtrom, J. A. Kowalski, E. A. Qian, D. Jung, F. R. Brushett, A. M. Spokoyny, Perfunctionalized Dodecaborate Clusters as Stable Metal-Free Active Materials for Charge Storage, ACS Applied Energy Materials 2 (2019) 4907-4913. https://doi.org/10.1021/acsaem.9b00610

W. Duan, R. S. Vemuri, J. D. Milshtein, S. Laramie, R. D. Dmello, J. Huang, L. Zhang, D. Hu, M. Vijayakumar, W. Wang, J. Liu, R. M. Darling, L. Thompson, K. Smith, J. S. Moore, F. R. Brushett, X. Wei, A Symmetric Organic-Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by Ftir, Journal of Materials Chemistry A 4 (2016) 5448-5456. https://doi.org/10.1039/c6ta01177b

M. Skyllas-Kazacos, M. Rychcik, G. Robins Robert, (Unisearch Limited), patent 1986AU-0055562 (1986)

M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. G. Fane, M.A. Green, New All-Vanadium Redox Flow Cell, Journal of The Electrochemical Society 133 (1986) 1057-1058. https://doi.org/10.1149/1.2108706

F. D. W. Y. Qu, L. Y. Fan, X. Y. Feng, J. Y.Ma , Review of Vanadium Redox Flow Battery Technology, Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 52 (2022) 1-24. https://doi.org/10.13229/j.cnki.jdxbgxb20210047

J. Marquez, O. Marquez, E. Weinhold, K. Márquez, Y. Balladores, Vanadium in Redox Flow Cells. Current Status: A Review (Part B), Ciencia E Ingenieria 42 (2021) 351-358. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/17278

J. Marquez, O. Marquez, E. Weinhold, K. Márquez, Y. Balladores, Vanadium in Redox Flow Cells. Current Status: A Review (Part A), Ciencia E Ingenieria 42 (2021) 327-338. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/17276

C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H.-Y. Jung, J. H. Yang, H.-T. Kim, .A Review of Vanadium Electrolytes for Vanadium Redox Flow Batteries, Renewable and Sustainable Energy Reviews 69 (2017) 263-274. https://doi.org/10.1016/j.rser.2016.11.188

M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery - A Review, ChemSuSchem 9 (2016) 1521-1543. https://doi.org/10.1002/cssc.201600102

A. Cunha, J. Martins, N. Rodrigues, F. P. Brito, Vanadium Redox Flow Batteries: A Technology Review, International Journal of Energy Research 39 (2015) 889-918. https://doi.org/10.1002/er.3260

G. Kear, A. A. Shah, F. C. Walsh, Development of the All-Vanadium Redox Flow Battery for Energy Storage: A Review of Technological, Financial and Policy Aspects, International Journal of Energy Research 36 (2012) 1105-1120. https://doi.org/10.1002/er.1863

H.-S. Choi, J.-C. Kim, C.-H. Ryu, G.-J. Hwang, Research Review of the All Vanadium Redox-Flow Battery for Large Scale Power Storage, Membrane Journal 21 (2011) 107-117. https://www.koreascience.or.kr/article/JAKO201128563050874.pdf

S. Zhu, W. Sun, Q. Wang, H. Yin, B. Wang, Review of R&D Status of Vanadium Redox Battery, Huagong Jinzhan 26 (2007) 207-211. https://hgjz.cip.com.cn/EN/1000-6613/home.shtml

K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, Vanadium Redox Flow Batteries: A Comprehensive Review, Journal of Energy Storage 25 (2019) 100844. https://doi.org/10.1016/j.est.2019.100844

M. Skyllas-Kazacos, J. F. Mccann, Vanadium Redox Flow Batteries (Vrbs) for Medium- and Large-Scale Energy Storage, in Advances in Batteries for Medium and Large-Scale Energy Storage: Types and Applications, Elsevier, 2015, pp. 329-386. https://doi.org/10.1016/B978-1-78242-013-2.00010-8.

Y. V. Tolmachev, Flow batteries from 1879 to 2022 and beyond, Journal of Electrochemical Science and Engineering (2022) submitted. https://www.researchgate.net/publication/362405724_Flow_batteries_from_1879_to_2022_and_beyond

Valuewalk: Vanadium Redox Flow Batteries: The Next Big Wave after Lithium Batteries, Newstex, Chatham, 2016. https://www.mining.com/web/vanadium-redox-flow-batteries-the-next-big-wave-after-lithium-batteries/

Y. H. Huang, Y. Su, A. Garg, Measurement and Prediction of Decomposed Energy Efficiencies of Lithium Ion Batteries with Two Charge Models, Journal of Electrochemical Energy Conversion and Storage 18 (2021) 030901. https://doi.org/10.1115/1.4049576

V. Bobanac, H. Basic, H. Pandzic, 19th International Conference on Smart Technologies (IEEE EUROCON), Lviv, UKRAINE, 2021, pp. 385-389, Abstract no. WOS:000728121700072.

D. S. Aaron, Q. Liu, Z. Tang, G. M. Grim, A. B. Papandrew, A. Turhan, T. A. Zawodzinski, M. M. Mench, Dramatic Performance Gains in Vanadium Redox Flow Batteries through Modified Cell Architecture, Journal of Power Sources 206 (2012) 450-453. https://doi.org/10.1016/j.jpowsour.2011.12.026

M. Skyllas-Kazacos, Vanadium Flow Batteries: Principles, Characteristics, Structure, Evaluation, in Redox Flow Batteries: Fundamentals and Applications, Taylor & Francis Group, Milton, 2017, pp. 327-354. 9781498753968 (ISBN); 9781498753944 (ISBN) https://doi.org/10.1201/9781315152684

T. F. Fuller, J. N. Harb, Electrochemical Engineering, Wiley, 2018. ISBN 9781119004257

M. Skyllas-Kazacos, L. Y. Cao, M. Kazacos, N. Kausar, N. Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery Review, ChemSuSchem 9 (2016) 1521-1543 https://doi.org/10.1002/cssc.201600102.

A. R. Septiana, W. Honggowiranto, S. Sudaryanto et al., 1st Materials Research Society-Indonesia Conference and Congress 2017, MRS-INA C and C 2017, IOP Conference Series: Materials Science and Engineering, 2018. https://iopscience.iop.org/article/10.1088/1757-899X/432/1/012063/pdf

T. Elwert, Q. Hua, K. Schneider, Recycling of Lithium Iron Phosphate Batteries: Future Prospects and Research Needs, Materials Science Forum 959 (2019) 49-68. https://doi.org/10.4028/www.scientific.net/MSF.959.49

Z. Huang, A. Mu, Research and Analysis of Performance Improvement of Vanadium Redox Flow Battery in Microgrid: A Technology Review, International Journal of Energy Research 45 (2021) 14170-14193. https://doi.org/10.1002/er.6716

K. Tagawa, R. J. Brodd, Production Processes for Fabrication of Lithium-Ion Batteries, in Lithium-Ion Batteries: Science and Technologies, M. Yoshio, R.J. Brodd, A. Kozawa Eds., Springer, New York, 2009, pp. 181-194. https://doi.org/10.1007/978-0-387-34445-4_8.

J. Houser, A. Pezeshki, J. T. Clement, D. Aaron, M. M. Mench, Architecture for Improved Mass Transport and System Performance in Redox Flow Batteries, Journal of Power Sources 351 (2017) 96-105. https://doi.org/10.1016/j.jpowsour.2017.03.083

M. Uhrig, S. Koenig, M. R. Suriyah, T. Leibfried, Lithium-Based vs. Vanadium Redox Flow Batteries - a Comparison for Home Storage Systems, Energy Procedia 99 (2016) 35-43. https://doi.org/10.1016/j.egypro.2016.10.095

M. R. Mohamed, S. M. Sharkh, F. C. Walsh, Redox Flow Batteries for Hybrid Electric Vehicles: Progress and Challenges, 5th IEEE Vehicle Power and Propulsion Conference (VPPC 09), Ieee, Dearborn, MI, 2009, p. 491-497 https://doi.org/10.1109/vppc.2009.5289801

C. Bailleux, When Electrochemistry Paved the Way to the Sky, Proc.-Electrochem. Soc., 1987, p. 268-78. https://www.google.com/books/edition/Proceedings_of_the_Symposium_on_History/A8frAAAAMAAJ?hl=en&gbpv=1&dq=C.+Bailleux,+When+Electrochemistry+Paved+the+Way+to+the+Sky&pg=PA268&printsec=frontcover

La France (Airship), https://collection.sciencemuseumgroup.org.uk/objects/co29480/the-tissandier-la-france-airship-1883-aircraft-airships visited on 2022-09-13.

E. J. Cairns, E. H. Hietbrink, Electrochemical Power for Transportation, in Comprehensive Treatise of Electrochemistry, 1981. https://doi.org/10.1007/978-1-4615-6687-8_15

D. L. Douglas, J. R. Birk, Secondary Batteries for Electrical Energy Storage, Annual Review of Energy 5 (1980) 61-88. https://doi.org/10.1146/annurev.eg.05.110180.000425

C. S. Bradley, (The Bradley Electric Power Company), US409448 (1884) https://patents.google.com/patent/US409448A/en

C. S. Bradley, (The Bradley Electric Power Company, United States), US312802 (1884) https://patents.google.com/patent/US312802A/en?oq=US312802

R. Bellows, H. Einstein, P. Grimes, E. Kantner, K. Newby, J. A. Shropshire, Bipolar Zn-Br2 Battery for Motive Power, Proceedings of the Symposia on Stationary Energy Storage Load Leveling and Remote Applications (1988) https://www.google.com/books/edition/Proceedings_of_the_Symposia_on_Stationar/U-BsAAAAIAAJ?hl=en&gbpv=0

R. J. Bellows, H. Einstein, E. Kantner et al., Proceedings of the 20th Intersociety Energy Conversion Engineering Conference, Energy for the Twenty-First Century. Volume 2., Miami Beach, FL, USA, 1985, pp. 70-78. https://www.osti.gov/servlets/purl/6775593

R. J. Bellows, P. Grimes, J. A. Shropshire et al., Advances in Zinc Bromine Batteries for Motive Power, EVC Expo 80 Conf Proc, Electr Veh Counc, Washington, DC, USA ; St Louis, MO, USA, 1980. https://ui.adsabs.harvard.edu/abs/1980iece.conf.1465B/abstract

J. Bolsted, P. Eidler, R. Miles, R. Petersen, K. Yaccarino, S. Lott, Proof-of-Concept Zinc/Bromine Electric Vehicle Battery, Johnson Controls, Inc., 1991, p. 98. https://trid.trb.org/view/361885

G. Clerici, M. De Rossi, M. Marchetto, Zinc-Bromine Storage Battery for Electric Vehicles, Academic, 1975, p. 167-181. Proceedings of the Ninth International Symposium, Brighton, Sussex, England. https://ui.adsabs.harvard.edu/abs/1975psrd.proc..167C/abstract

P. A. Eidler, Zinc/Bromine Battery from Johnson Controls Powers "Solectria Force" in Race, PR Newswire, New York, 1992, p. 1. https://www.proquest.com/docview/450248116

M. J. Montgomery, J. E. Oxley, R. A. Putt, Gould Zinc-Bromine Battery-Applicability for Vehicle Propulsion, Journal of the Electrochemical Society 125(8) (1978) C343.

H. Nakao, Y. Suzuki, M. Okawa, Zinc-Bromine Battery for the Toyota Ev-30, Electric Vehicle Developments 8 (1989) 137-139.

G. Schauer, Electric Vehicle with a Zinc-Bromine Battery, Ostbayerisches Technol. Transfer Inst., 1994, 251-257. https://books.google.com/books?id=CrzxDR6skBgC&printsec=frontcover#v=onepage&q&f=false

D. H. Swan, B. Dickinson, M. Arikara, M. Prabhu , Construction and Performance of a High Voltage Zinc Bromine Battery in an Electric Vehicle, Proceedings of the 10th Annual Battery Conference on Applications and Advances, IEEE, Piscataway, NJ, United States ; Long Beach, CA, USA, 1995, p. 135-140. https://ieeexplore.ieee.org/document/398493

G. Tomazic, Zinc-Bromine Systems for Ev-Batteries-Advances and Future Outlook, ECS Proceedings 96-14 (1996) 212-220. ISSN: 01616374

F. G. Will, Zinc-Bromine Battery: Possible Candidate for Electric Vehicles and Load Leveling, Proc Intersoc Energy Convers Eng Conf 12th, ANS (IEEE Cat n 77CH12633 ENERGY), La Grange Park, Ill ; Washington, DC, USA, 1977, p. 250-255. https://ui.adsabs.harvard.edu/abs/1977iece.conf..250W/abstract

J. P. Zagrodnik, M. D. Eskra, Zinc/Bromine Powered Electric Vehicle, Electric Vehicle Developments 7 (1988) 83-84. https://ui.adsabs.harvard.edu/abs/1987iece.conf.1039Z/abstract

S. Gross, Review of Candidate Batteries for Electric Vehicles, Energy Conversion 15 (1972) 95-112. https://doi.org/10.1016/0013-7480(76)90021-8

F. G. Will, H. S. Spacil, Performance Analysis of Zinc-Bromine Batteries in Vehicle and Utility Applications, Journal of Power Sources 5 (1980) 173-188. https://doi.org/10.1016/0378-7753(80)80105-4

D. H. Swan, B. Dickinson, M. Arikara, G. Tomazic, Demonstration of a Zinc Bromine Battery in an Electric Vehicle, Proceedings of the 9th Annual Battery Conference on Applications and Advances, Publ by IEEE, Piscataway, NJ, United States ; Long Beach, CA, USA, 1994, p. 104-109. https://doi.org/10.1109/62.282513

R. J. Bellows, P. Grimes, H. Einstein, E. Kantner, P. Malachesky, K. Newby, Zinc-Bromine Battery Design for Electric Vehicles, Ieee Transactions on Vehicular Technology 32 (1983) 26-32. https://doi.org/10.1109/t-vt.1983.23941

P. A. Malachesky, R. J. Bellows, H. Einstein, P. Grimes, E. Kantner, K. Newby, A. Young , Design and Performance of Bipolar, Flowing Electrolye Zinc-Bromine Batteries for Electric Vehicles, SAE Technical Papers, SAE International, 1982. https://doi.org/10.4271/820177

P. A. Malachesky, R. J. Bellows, H. E. Einstein, P. G. Grimes, K. R. Newby, A. R. Young, Design of Bipolar, Flowing Electrolyte Zinc-Bromine Electric Vehicle Battery System, SAE Technical Papers, SAE International, 1983, https://doi.org/10.4271/830289

D. H. Swan, J. T. Guerin, Design and Vehicle Integration of an Advanced Zinc Bromine Battery, Future Transportation Technology Conference and Exposition, SAE International, Costa Mesa, CA, 1995. https://doi.org/10.4271/830289

R. D. Weaver, Secondary Lithium-Chlorine Batteries, Power Sources Conference, 1965.

D. A. Swinkels, Lithium-Chlorine Battery, Journal of The Electrochemical Society 113 (1966) 6. https://doi.org/10.1149/1.2423867

D. A. Swinkles, Electrochemical Vehicle Power Plants, IEEE Spectrum (1968) 71-77.

S. Yoshizawa, Z. Takehara, Y. Ito et al., Lithium Alloys-Chlorine Secondary Battery. I. Basic Studies on a Lithium Alloys-Chlorine Secondary Battery Using a Molten Salt as the Electrolyte, Denki Kagaku 39 (1971) 834-9.

M. A. Vorotyntsev, D. V. Konev, Y. V. Tolmachev, Electroreduction of Halogen Oxoanions Via Autocatalytic Redox Mediation by Halide Anions: Novel EC Mechanism. Theory for Stationary 1d Regime, Electrochimica Acta 173 (2015) 779-795. https://doi.org/10.1016/j.electacta.2015.05.099

O. A. Goncharova, A. T. Glazkov, K. V. Lizgina, A. A. Piryazev, S. L. Koryakin, D. V. Konev, M. A. Vortyntsev, V. B. Mintsev, Electroreduction of the Bromate Anion on a Microlectrode in Excess Acid: Solution of the Inverse Kinetic Problem, Doklady Akademii Nauk 484 (2019) 294-298. https://doi.org/10.31857/s0869-56524843294-298

A. D. Modestov, D. V. Konev, A. E. Antipov, M. A. Vorotyntsev, Hydrogen-Bromate Flow Battery: Can One Reach Both High Bromate Utilization and Specific Power?, Journal of Solid State Electrochemistry 23 (2019) 3075-3088. https://doi.org/10.1007/s10008-019-04371-w

K. T. Cho, T. Razaulla, Redox-Mediated Bromate Based Electrochemical Energy System, Journal of The Electrochemical Society 166 (2019) A286-A296. https://doi.org/10.1149/2.0841902jes.

Y.-M. Chiang, W. C. Carter, B. H. Ho, M. Duduta, High Energy Density Redox Flow Device. US 2010/0047671 A1

M. Duduta, B. Ho, V. C. Wood, P. Limthongkul, V. E. Brunini. V. C. Carter, Y.-M. Chiang, Semi-Solid Lithium Rechargeable Flow Battery, Advanced Energy Materials 1 (2011) 511-516. https://doi.org/10.1002/aenm.201100152

L. Zhang, X. Wu, W. Qian, H. Zhang, S. Zhang, Lithium Slurry Flow Cell, a Promising Device for the Future Energy Storage, Green Energy and Environment 6 (2021) 5-8. https://doi.org/10.1016/j.gee.2020.09.012

24m Technologies Inc, Private Company Research Reports, Melbourne, 2022.

Q. Huang, H. Li, M. Grätzel, Q. Wang, Reversible Chemical Delithiation/Lithiation of LiFePO4: Towards a Redox Flow Lithium-Ion Battery, Physical Chemistry Chemical Physics 15 (2013) 1793-1797. https://doi.org/10.1039/c2cp44466f

M. Moghaddam, S. Sepp, C. Wiberg, A. Bertei, A. Rucci, P. Peljo, Thermodynamics, Charge Transfer and Practical Considerations of Solid Boosters in Redox Flow Batteries, Molecules 26 (2021) 2111. https://doi.org/10.3390/molecules26082111

M. C. Argyrou, P. Christodoulides, S. A. Kalogirou, Energy Storage for Electricity Generation and Related Processes: Technologies Appraisal and Grid Scale Applications, Renewable & Sustainable Energy Reviews 94 (2018) 804-821. https://doi.org/10.1016/j.rser.2018.06.044

LiFePO4 Battery Prices from Sinopoly. http://www.kta-ev.com/default.asp

C. Minke, T. Turek, Materials, System Designs and Modelling Approaches in Techno-Economic Assessment of All-Vanadium Redox Flow Batteries – a Review, Journal of Power Sources 376 (2018) 66-81. https://doi.org/10.1016/j.jpowsour.2017.11.058

C. Minke, M. A. Dorantes Ledesma, Impact of Cell Design and Maintenance Strategy on Life Cycle Costs of Vanadium Redox Flow Batteries, Journal of Energy Storage 21 (2019) 571-580. https://doi.org/10.1016/j.est.2018.12.019

S. Weber, J. F. Peters, M. Baumann, M. Weil, Life Cycle Assessment of a Vanadium Redox Flow Battery, Environmental Science and Technology 52 (2018) 10864-10873. https://doi.org/10.1021/acs.est.8b02073

J. Gouveia, A. Mendes, R. Monteiro, T. M. Mata, N. S. Caetano, A. A. Martins, Life Cycle Assessment of a Vanadium Flow Battery, Energy Reports 6 (2020) 95-101. https://doi.org/10.1016/j.egyr.2019.08.025

F. Rossi, M. L. Parisi, S. Greven, R. Basosi, A. Sinicropi, Life Cycle Assessment of Classic and Innovative Batteries for Solar Home Systems in Europe, Energies 13 (2020) 3454. https://doi.org/10.3390/en13133454

K. E. Rodby, T. J. Carney, Y. A. Gandomi, J. L. Barton, R. M. Darling, F. R. Brushett, Assessing the Levelized Cost of Vanadium Redox Flow Batteries with Capacity Fade and Rebalancing, Journal of Power Sources 460 (2020) 227958. https://doi.org/10.1016/j.jpowsour.2020.227958

J. Helber Vinco, A. E. E. da Cunha Domingos, D. C. R. Espinosa, J. A. Soares Tenório, M. P.Galluzzi Baltazar, Unfolding the Vanadium Redox Flow Batteries: An Indeep Perspective on Its Components and Current Operation Challenges, Journal of Energy Storage 43 (2021) 103180. https://doi.org/10.1016/j.est.2021.103180

X. Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, D. Jang, A Review of All-Vanadium Redox Flow Battery Durability: Degradation Mechanisms and Mitigation Strategies, International Journal of Energy Research 43 (2019) 6599-6638. https://doi.org/10.1002/er.4607

B. E. Gaddy, V. Sivaram, T. B. Jones, L. Wayman, Venture Capital and Cleantech: The Wrong Model for Energy Innovation, Energy Policy 102 (2017) 385-395. https://doi.org/10.1016/j.enpol.2016.12.035

S. Bose, G. Dong, A. Simpson, Financing Clean Technology Innovation and the Transition to Renewable Energy, Palgrave, Basingstoke, 2019, p. 339-368. https://doi.org/10.1007/978-3-030-05624-7_14

A. Goldstein, C. Doblinger, E. Baker, L. Díaz Anadón, Patenting and Business Outcomes for Cleantech Startups Funded by the Advanced Research Projects Agency-Energy, Nature Energy 5 (2020) 803-810. https://doi.org/10.1038/s41560-020-00683-8

C. C. Niemann, P. Dickel, G. Eckardt, The Interplay of Corporate Entrepreneurship, Environmental Orientation, and Performance in Clean-Tech Firms-a Doubled-Edged Sword, Business Strategy and the Environment 29 (2020) 180-196. https://doi.org/10.1002/bse.2357

P. D. Hegeman, R. Sørheim, Why Do They Do It? Corporate Venture Capital Investments in Cleantech Startups, Journal of Cleaner Production 294 (2021) 126315. https://doi.org/10.1016/j.jclepro.2021.126315

R. Owen, G. Brennan, F. Lyon, T. Harrer, Financing Cleantech Sme Innovation: Setting an Agenda, IEEE Transactions on Engineering Management 68 (2021) 1168-1172. https://doi.org/10.1109/TEM.2020.3005702

J. Cailou, L. DeHai, Does Venture Capital Stimulate the Innovation of China's New Energy Enterprises?, Energy 244 (2022) 122704. https://doi.org/10.1016/j.energy.2021.122704

R. Yan, Q. Wang, Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage, Advanced Materials 30 (2018) 1802406. https://doi.org/10.1002/adma.201802406

Q. Wang, S. M. Zakeeruddin, D. Wang, I. Exnar, M. Grätzel, Redox Targeting of Insulating Electrode Materials: A New Approach to High-Energy-Density Batteries, Angewandte Chemie International Edition 45 (2006) 8197-8200. https://doi.org/10.1002/anie.200602891

Y. G. Zhu, Y. Du, C. Jia, M. Zhou, L. Fan, X. Wang, Q. Wang, Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator, Journal of the American Chemical Society 139 (2017) 6286-6289. https://doi.org/10.1021/jacs.7b01146

G. Li, L. Yang, X. Jiang, T. Zhang, H. Lin, Q. Yao, J. Y. Lee, A Multi-Electron Redox Mediator for Redox-Targeting Lithium-Sulfur Flow Batteries, Journal of Power Sources 378 (2018) 418-422. https://doi.org/10.1016/j.jpowsour.2017.11.066

M. Zhou, Q. Huang, T. N. Pham Truong, J. Ghilane, Y. G. Zhu, C. Jia, R. Yan, L. Fan, H. Randriamahazaka, Q. Wang, Nernstian-Potential-Driven Redox-Targeting Reactions of Battery Materials, Chem 3 (2017) 1036-1049. https://doi.org/10.1016/j.chempr.2017.10.003

Mcmaster-Carr Catalogue, Item Number 1109k1, 2022. https://www.mcmaster.com/catalog/128/810 (accessed September 14, 2022)

C. A. Lundgren, K. Xu, T. R. Jow, J. Allen, S. S. Zhang, Lithium-Ion Batteries and Materials, Springer Handbooks, Springer, 2017, p. 449-494. https://doi.org/10.1007/978-3-662-46657-5_15

C. Jia, Q. Wang, Redox Flow Lithium Batteries: Toward Higher Energy Density, in Redox Flow Batteries: Fundamentals and Applications, CRC Press, 2017, pp. 403-420. https://doi.org/10.1201/9781315152684

F. Zhang, S. Huang, X. Wang, C. Jia, Y. Du, Q. Wang, Redox-Targeted Catalysis for Vanadium Redox-Flow Batteries, Nano Energy 52 (2018) 292-299. https://doi.org/10.1016/j.nanoen.2018.07.058

J. Peng, N. M. Cantillo, Y. Xiao, K. McKensie Nelms, L. S. Roberts, G. Goenaga, A. Imel, B. A. Barth, M. Dadmun, D. G. Hayes, T. Zawodzinski, Decoupling Conductivity and Solubility in Electrolytes Using Microemulsions, Journal of The Electrochemical Society 168 (2021) 080502. https://doi.org/10.1149/1945-7111/ac180b

B. A. Barth, A. Imel, K. McKensie Nelms, G. A. Goenaga, T. Zawodzinski, Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries, Frontiers in Chemistry 10 (2022) 831200. https://doi.org/10.3389/fchem.2022.831200

Q. Huang, Q. Wang, Next-Generation, High-Energy-Density Redox Flow Batteries, ChemPlusChem 80 (2015) 312-322. https://doi.org/10.1002/cplu.201402099

H. Ye, J. Sun, X. F. Lim, Y. Zhao, J. Y. Lee, Mediator–Assisted Catalysis of Polysulfide Conversion for High–Loading Lithium–Sulfur Batteries Operating under the Lean Electrolyte Condition, Energy Storage Materials 38 (2021) 338-343. https://doi.org/10.1016/j.ensm.2021.03.023

H. Ye, J. Sun, Y. Zhao, J. Y. Lee, An Integrated Approach to Improve the Performance of Lean–Electrolyte Lithium–Sulfur Batteries, Journal of Energy Chemistry 67 (2022) 585-592. https://doi.org/10.1016/j.jechem.2021.11.004

C. W. Anson, S. S. Stahl, Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels, Chemical Reviews 120 (2020) 3749-3786. https://doi.org/10.1021/acs.chemrev.9b00717

Y. V. Tolmachev, M. A. Vorotyntsev, Fuel Cells with Chemically Regenerative Redox Cathodes, Russian Journal of Electrochemistry 50 (2014) 403-411. https://doi.org/10.1134/S1023193514020050

H. Park, J. J. Ree, K. Kim, Identification of Promising Patents for Technology Transfers Using Triz Evolution Trends, Expert Systems with Applications 40 (2013) 736-743. https://doi.org/10.1016/j.eswa.2012.08.008.

J. F. Martin, The Myth of the 18-Month Delay in Publishing Patent Applications, IP Watchdog, 2015.

I. Exnar, Q. Wang, M. Grätzel, S. M. Zakeeruddin, L. Kavan, (High Power Lithium SA, Dow Global Technologies LLS), WO2007116363.

Pitchbook: High Power Lithium, https://pitchbook.com/profiles/company/57351-79.

Q. Wang, N. Evans, S. M. Zakeeruddin, I. Exnar, M. Grätzel, Molecular Wiring of Insulators: Charging and Discharging Electrode Materials for High-Energy Lithium-Ion Batteries by Molecular Charge Transport Layers, Journal of the American Chemical Society 129 (2007) 3163-3167. https://doi.org/10.1021/ja066260j

I. Exnar, Q. Wang, M. Gratzel, S. M. Zakeeruddin, L. M. Kavan, (High Power Lithium ; Dow Global Technologies LLC), US 20090176162: Lithium Rechargeable Electrochemical Cell.

Q. Wang, N. Evans, S. M. Zakeeruddin , P. Péchy, I. Exnar, M. Grätzel, High Energy Lithium Batteries by Molecular Wiring and Targeting Approaches, Journal of Power Sources 174 (2007) 408-413. https://doi.org/10.1016/j.jpowsour.2007.06.202

D. Spacek, Switzerland Launches Revision of Federal Act on Patents, Lexology, 2021.

Q. Wang, S. M. Zakeeruddin, D. Y. Wang, I. Exnar, M. Grätzel, Redox Targeting of Insulating Electrode Materials: A New Approach to High-Energy-Density Batteries, Angewandte Chemie-International Edition 45 (2006) 8197-8200. https://doi.org/10.1002/anie.200602891

W. Qing, H. Qizhao, (National University of Singapore), US 20140178735: Redox Flow Battery System.

F. Pan, J. Yang, Q. Huang, X. Wang, H. Huang, Q. Wang, Redox Targeting of Anatase TiO2 for Redox Flow Lithium-Ion Batteries, Advanced Energy Materials 4 (2014) 1400567. https://doi.org/10.1002/aenm.201400567

J. R. Jennings, Q. Huang, Q. Wang, Kinetics of LixFePO4 Lithiation/Delithiation by Ferrocene-Based Redox Mediators: An Electrochemical Approach, Journal of Physical Chemistry C 119 (2015) 17522-17528. https://doi.org/10.1021/acs.jpcc.5b03561

C. K. Jia, F. Pan, Y. G. Zhu, Q. Huang, L. Lu, Q. Wang, High-Energy Density Nonaqueous All Redox Flow Lithium Battery Enabled with a Polymeric Membrane, Science Advances 1 (2015) e1500886. https://doi.org/10.1126/sciadv.1500886

Y. Linlin, L. Wenjun, H. Hao et al., (Fudan University, Shanghai Electric Group Corp), CN 105206856: Novel Lithium Ion Flow Cell.

F. Pan, Q. Wang, Redox Species of Redox Flow Batteries: A Review, Molecules 20 (2015) 20499-20517. https://doi.org/10.3390/molecules201119711

Q. Huang, H. Li, M. Grätzel, Q. Wang, Reversible Chemical Delithiation/Lithiation of LiFePO4: Towards a Redox Flow Lithium-Ion Battery, Physical Chemistry Chemical Physics 15 (2013) 1793-1797. https://doi.org/10.1039/C2CP44466F

J. Li, L. Yang, S. Yang, J. Y. Lee, The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries, Advanced Energy Materials 5 (2015) 1501808. https://doi.org/10.1002/aenm.201501808

A. Garsuch, D. Aurbach, R. Elazari, G. Salitra, S. Meini, (Technische Universitaet Muenchen), WO 201544829: Use of Redox Mediators as Additives in Electrolytes of Lithium Sulfur Batteries.

S. Meini, R. Elazari, A. Rosenman, A. Garsuch, D. Aurbach, The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems, Journal of Physical Chemistry Letters 5 (2014) 915-918. https://doi.org/10.1021/jz500222f

H. Nobuhiko, (Panasonic), US 10529997: Redox Flow Battery Including Permeation Preventer for Retaining Insoluble Active Material in Electrolytic Solution Container.

B. A. Helms, P. D. Frischmann, Y.-M. Chiang, F. Y. Fan, S. E. Doris, L. C. H. Gerber, (University of California, Massachusetts Institute of Technology), US 10727488: Redox Mediators for Metal-Sulfur Batteries.

T. M. Anderson, N. Hudak, C. Staiger, H. Pratt, (Sandia Corporation), US 9548509: Polyoxometalate Active Charge-Transfer Material for Mediated Redox Flow Battery.

Y. Zhao, Y. Ding, Y. Li, L. Peng, H. Ryung Byon, J. B. Goodenough, G. Yu, A Chemistry and Material Perspective on Lithium Redox Flow Batteries Towards High-Density Electrical Energy Storage, Chemical Society Reviews 44 (2015) 7968-7996. https://doi.org/10.1039/c5cs00289c

N. Honami, (Panasonic), US 10658693: Flow Battery.

N. Honami, (Panasonic), US 10797337: Flow Battery.

N. Honami, O. Yu, (Panasonic), US 10873101: Flow Battery.

N. Honami, O. Yu, (Panasonic), US 10547077: Flow Battery.

F. Masahisa, (Panasonic), US 11018364: Flow Battery.

F. Masahisa, I. Shuji, (Panasonic), US 20190058208: Flow Battery.

N. Honami, (Panasonic), JP 2019003875: Flow Battery.

N. Honami, (Panasonic), US 10727505: Flow Battery That Includes Liquid Containing Mediator.

N. Honami, O. Yu, (Panasonic), US 11211618: Flow Battery That Includes Liquid Containing Mediator.

A. Shinji, (Panasonic), US 10985425: Flow Battery Containing Lithium Ion Conductor.

I. Shuji, F. Masahisa, (Panasonic), US 10930951: Flow Battery That Includes Active Material.

O. Yu, (Panasonic), US 10727506: Flow Battery That Includes Redox Mediator.

O. Yu, (Panasonic), US 10541435: Flow Battery That Includes Redox Mediator.

O. Yu, (Panasonic), US 10629910: Flow Battery That Includes Redox Mediator.

N. Honami, (Panasonic), US 11094957: Flow Battery [Half-Cell Data].

S. Honami, (Panasonic), US 11264632: Flow Battery [Half-Cell Data].

F. Masahisa, I. Shuji, O. Yu et al., (Panasonic), US 20210280890: Redox Flow Battery.

I. Shuji, F. Masahisa, K. Haruko et al., (Panasonic), US 11239482: Flow Battery.

I. Shuji, F. Masahisa, S. Honami et al., (Panasonic), US 20200350608: Flow Battery [Exper.Data].

O. Yu, I. Shuji, O. Yuka, (Panasonic), US 20210280889: Redox Flow Battery.

O. Yuka, A. Shinji, S. Sho, (Panasonic), US 10833346: Flow Battery.

Q. Huang, J. Yang, C. B. Ng, C. Jia, Q. Wang, A Redox Flow Lithium Battery Based on the Redox Targeting Reactions between LiFePO4 and Iodide, Energy and Environmental Science 9 (2016) 917-921. https://doi.org/10.1039/c5ee03764f

A. K. Sharma, E. Birgersson, F. Pan, Q. Wang, Analysis of a Validated Mathematical Model for a Redox-Flow Lithium Ion Battery System, Electrochimica Acta 247 (2017) 183-192. https://doi.org/10.1016/j.electacta.2017.05.142

C. Jia, Q. Wang, Chapter 12. Redox Flow Lithium Batteries: Toward Higher Energy Density Redox Flow Batteries: Fundamentals and Applications, H. Zhang, X. Li, J. Zhang Eds., CRC Press, 2017, p. 403-420. https://doi.org/10.1201/9781315152684

A. K. Sharma, E. Birgersson, F. Pan, Q. Wang, Mathematical Modeling and Experiments of a Half-Cell Redox Flow Lithium Ion Battery System, Electrochimica Acta 204 (2016) 1-8. https://doi.org/10.1016/j.electacta.2016.03.072

R. Yan, L. Liu, H. Zhao, Y. G. Zhu, C. Jia, M. Han, Q. Wang, A TCO-Free Prussian Blue-Based Redox-Flow Electrochromic Window, Journal of Materials Chemistry C 4 (2016) 8997-9002. https://doi.org/10.1039/c6tc03330j

M. Zhou, Q. Huang, T. N. Pham Truong, J. Ghilane, Y. G. Zhu, C, Jia, R. Yan, L. Fan, H. Randriamahazaka, Q. Wang, Nernstian-Potential-Driven Redox-Targeting Reactions of Battery Materials, Chem 3 (2017) 1036-1049. https://doi.org/10.1016/j.chempr.2017.10.003

F. Zhang, S. Huang, X. Wang, C. Jia, Y. Du, Q. Wang, Redox-Targeted Catalysis for Vanadium Redox-Flow Batteries, Nano Energy 52 (2018) 292-299. https://doi.org/10.1016/j.nanoen.2018.07.058

L. Yang, J. Zeng, B. Ding, C. Xu, J. Y. Lee, Lithium Salt Inclusion as a Strategy for Improving the Li+ Conductivity of Nafion Membranes in Aprotic Systems, Advanced Materials Interfaces 3 (2016) 1600660. https://doi.org/10.1002/admi.201600660

R. Yan, Q. Wang, Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage, Advanced Materials (Weinheim, Ger.) 30 (2018) 1802406. https://doi.org/10.1002/adma.201802406

R. Yan, J. Ghilane, K. Chai Phuah, T. N. Pham Truong, S. Adams, H. Randriamahazaka, Q. Wang, Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy, Journal of Physical Chemistry Letters 9 (2018) 491-496. https://doi.org/10.1021/acs.jpclett.7b03136

F. Pan, Y. G. Zhu, Q. Wang, Redox Flow Lithium Batteries, in Recent Advances in Energy Storage Materials and Devices, L. Lu, N. Hu, Eds., Materials Research Forum Llc, Millersville, 2017, pp. 185-206. https://doi.org/10.21741/9781945291272-8.

F. Pan, J. Yang, C. Jia, H. Li, Q. Wang, Biphenyl-Lithium-Tegdme Solution as Anolyte for High Energy Density Non-Aqueous Redox Flow Lithium Battery, Journal of Energy Chemistry 27 (2018) 1362-1368. https://doi.org/10.1016/j.jechem.2018.04.008

F. Pan, Q. Huang, H. Huang, Q. Wang, High-Energy Density Redox Flow Lithium Battery with Unprecedented Voltage Efficiency, Chemistry of Materials 28 (2016) 2052-2057. https://doi.org/10.1021/acs.chemmater.5b04558

J. Li, L. Yang, B. Yuan, G. Li, J. Y. Lee, Combined Mediator and Electrochemical Charging and Discharging of Redox Targeting Lithium-Sulfur Flow Batteries, Materials Today Energy 5 (2017) 15-21. https://doi.org/10.1016/j.mtener.2017.04.006

Q. Huang, Q. Wang, Redox-Assisted Li+-Storage in Lithium-Ion Batteries, Chinese Physics B 25 (2016) 018213. https://doi.org/10.1088/1674-1056/25/1/018213

L. Fan, C. Jia, Y. G. Zhu, Q. Wang, Redox Targeting of Prussian Blue: Toward Low-Cost and High Energy Density Redox Flow Battery and Solar Rechargeable Battery, ACSEnergy Letters 2 (2017) 615-621. https://doi.org/10.1021/acsenergylett.6b00667

W. Qing, Y. Juezhi, F. Li, (National University of Singapore), WO 2019245461: An Aqueous Redox Flow Battery.

W. Qing, J. Chuankun, H. Songpeng, (National University of Singapore), WO 201954947: A Condensed Phase Aqueous Redox Flow Battery.

J. Ostrander, R. Younesi, R. Mogensen, High Voltage Redox-Meditated Flow Batteries with Prussian Blue Solid Booster, Energies (Basel, Switz.) 14 (2021) 7498. https://doi.org/10.3390/en14227498

E. Zanzola, C. R. Dennison, A. Battistel, P. Peljo, H. Vrubel, V. Amstutz, H. H. Girault, Redox Solid Energy Boosters for Flow Batteries: Polyaniline as a Case Study, Electrochimica Acta 235 (2017) 664-671. https://doi.org/10.1016/j.electacta.2017.03.084

J. Lee, J. Tshishimbi Muya, H. Chung, J. Chang, Unraveling V(V)-V(IV)-V(III)-V(II) Redox Electrochemistry in Highly Concentrated Mixed Acidic Media for a Vanadium Redox Flow Battery: Origin of the Parasitic Hydrogen Evolution Reaction, ACS Applied Materials and Interfaces 11 (2019) 42066-42077. https://doi.org/10.1021/acsami.9b12676

I. Kroner, M. Becker, T. Turek, Determination of Rate Constants and Reaction Orders of Vanadium-Ion Kinetics on Carbon Fiber Electrodes, ChemElectroChem 7 (2020) 4314-4325. https://doi.org/10.1002/celc.202001033

N. Roznyatovskaya, J. Noack, K. Pinkwart, J. Tübke, Aspects of Electron Transfer Processes in Vanadium Redox-Flow Batteries, Current Opinion in Electrochemistry 19 (2020) 42-48. https://doi.org/10.1016/j.coelec.2019.10.003

L. K. Fa, Z. Qihao, C. Qiang, Design, Assembly and Performance Evaluation of Lithium-Sulfur Flow Batteries Based on Redox Targeting, The 3rd National Conference on New Energy and Chemical Materials And the National Symposium on Energy Conversion and Storage Materials, The Committee of New Chemical Materials of The Chinese Chemical Industry Society, Jiangsu Suzhou, China, 2018, p. 1.

L. K. Fa, Z. Qihao, R. Changwei, Design, Assembly and Performance Evaluation of Lithium-Sulfur Flow Batteries Based on Redox Targeting, 2019 4th National Conference on New Energy and Chemical Materials And National Symposium on Energy Conversion and Storage Materials, Dalian, Liaoning, China, 2019, p. 1.

M. Park, J. Ryu, W. Wang, J. Cho, Material Design and Engineering of Next-Generation Flow-Battery Technologies, Nature Reviews Materials 2 (2017) 16080. https://doi.org/10.1038/natrevmats.2016.80

J. Z. Yu, X. Wang, M. Y. Zhou, Q. Wang, A Redox Targeting-Based Material Recycling Strategy for Spent Lithium Ion Batteries, Energy & Environmental Science 12 (2019) 2672-2677. https://doi.org/10.1039/c9ee01478k

E. Schröter, C. Stolze, A. Saal, K. Schreyer, M. D. Hager, U. S. Schubert, All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries, ACS Applied Materials &. Interfaces 14 (2022) 6638-6648. https://doi.org/10.1021/acsami.1c21122

J. Z. Yu, M. Salla, H. Zhang, Y. Ji, F. Zhang, M. Zhou, Q. Wang, A Robust Anionic Sulfonated Ferrocene Derivative for Ph-Neutral Aqueous Flow Battery, Energy Storage Materials 29 (2020) 216-222. https://doi.org/10.1016/j.ensm.2020.04.020

M. Zhou, Y. Chen, M. Salla, H. Zhang, X. Wang, S. Reddy Mothe, Q. Wang, Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery, Angewandte Chemie-International Edition 132 (2020) 14286-14291. https://doi.org/10.1002/anie.202004603

T. Páez, F. Zhang, M. Á. Muñoz, L. Lubian, S. Xi, R. Sanz, Q. Wang, J. Palma, E. Ventosa, The Redox-Mediated Nickel-Metal Hydride Flow Battery, Advanced Energy Materials 12 (2022) 2102866. https://doi.org/10.1002/aenm.202102866

K. Itaya, I. Uchida, V. D. Neff, Electrochemistry of Polynuclear Transition Metal Cyanides: Prussian Blue and Its Analogues, Accounts of Chemical Research 19 (1986) 162-168. https://doi.org/10.1021/ar00126a001

Y. Chen, M. Zhou, Y. Xia, X. Wang, Y. Liu, Y. Yao, H. Zhang, Y. Li, S. Lu, W. Qin, X. Wu, Q. Wang, A Stable and High-Capacity Redox Targeting-Based Electrolyte for Aqueous Flow Batteries, Joule 3 (2019) 2255-2267. https://doi.org/10.1016/j.joule.2019.06.007

W. Qing, C. Yan, (National University of Singapore), WO 2020204830: A Redox Flow Battery.

M. Zhou, Y. Chen, Q. Zhang, S. Xi, J. Yu, Y. Du, Y.-S. Hu, Q. Wang, Na3V2(PO4)3 as the Sole Solid Energy Storage Material for Redox Flow Sodium-Ion Battery, Advanced Energy Materials 9 (2019) 1901188. https://doi.org/10.1002/aenm.201901188

Y. Cheng, X. Wang, S. Huang, W. Samarakoon, S. Xi, Y. Ji, H. Zhang, F. Zhang, Y. Du, Z. Feng, S. Adams, Q. Wang, Redox Targeting-Based Vanadium Redox-Flow Battery, ACS Energy Letters 4 (2019) 3028-3035. https://doi.org/10.1021/acsenergylett.9b01939

L. Li, S. Kim, Z. Yang et al., (Battelle Memorial Inst), US2012077079A1

L. Li, S. Kim, Z. Yang et al., (Battelle Memorial Inst), US105823.

L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage, Advanced Energy Materials 1 (2011) 394-400. https://doi.org/10.1002/aenm.201100008

T. Páez, A. Martínez-Cuezva, J. Palma, E. Ventosa, Mediated Alkaline Flow Batteries: From Fundamentals to Application, ACS Applied Energy Materials 2 (2019) 8328-8336. https://doi.org/10.1021/acsaem.9b01826

J. F. Vivo-Vilches, A. Nadeina, N. Rahbani, V. Seznec, D. Larcher, E. Baudrin, LiFePO4-ferri/ferrocyanide redox targeting aqueous posolyte: Set-up, efficiency and kinetics, Journal of Power Sources 488 (2021) 229387. https://doi.org/10.1016/j.jpowsour.2020.229387

D. Gupta, C. Cai, G. M. Koenig, Comparative Analysis of Chemical Redox between Redox Shuttles and a Lithium-Ion Cathode Material via Electrochemical Analysis of Redox Shuttle Conversion, Journal of The Electrochemical Society 168 (2021) 050546. https://doi.org/10.1149/1945-7111/ac0068

D. Kim, M. S. Sanford, T. P. Vaid, A. J. McNeil, A Nonaqueous Redox-Matched Flow Battery with Charge Storage in Insoluble Polymer Beads, Chemistry - A European Journal 28 (2022) e202200149. https://doi.org/10.1002/chem.202200149

X. Zheng, Y. Wang, Y. Xu, T. Ahmad, Y. Yuan, J. Sun, R. Luo, M. Wang, M. Chuai, N. Chen, T. Jiang, S. Liu, W. Chen, Boosting Electrolytic MnO2-Zn Batteries by a Bromine Mediator, Nano Letters 21 (2021) 8863-8871. https://doi.org/10.1021/acs.nanolett.1c03319

Y. Zhou, G. Cong, H. Chen, N.-C. Lai, Y.-C. Lu, A Self-Mediating Redox Flow Battery: High-Capacity Polychalcogenide-Based Redox Flow Battery Mediated by Inherently Present Redox Shuttles, ACS Energy Letters 5 (2020) 1732-1740. https://doi.org/10.1021/acsenergylett.0c00611

J. Ye, L. Xia, C. Wu, M. Ding, C. Jia, Q. Wang, Redox Targeting-Based Flow Batteries, Journal of Physics D 52 (2019) 443001. https://doi.org/10.1088/1361-6463/ab3251

T. -N. Pham-Truong, Q. Wang, J. Ghilane, H. Randriamahazaka, Recent Advances in the Development of Organic and Organometallic Redox Shuttles for Lithium-Ion Redox Flow Batteries, ChemSuSchem 13 (2020) 2142-2159. https://doi.org/10.1002/cssc.201903379

X. Wang, M. Zhou, F. Zhang, H. Zhang, Q. Wang, Redox Targeting of Energy Materials, Current Opinion in Electrochemistry 29 (2021) 100743. https://doi.org/10.1016/j.coelec.2021.100743

F. Zhang, M. Gao, S. Huang, H. Zhang, X. Wang, L. Liu, M. Han, Q. Wang, Redox Targeting of Energy Materials for Energy Storage and Conversion, Advanced Materials (Weinheim, Ger.) 34 (2021) 2104562. https://doi.org/10.1002/adma.202104562

J. M. Gitlin, Tesla Made $1.6 Billion in Q3, Is Switching to LFP Batteries Globally: The Lithium Iron Phosphate Cells Are Less Energy-Dense but Much Longer-Lived., Arstechnica, 2021, https://arstechnica.com/cars/2021/10/tesla-made-1-6-billion-in-q3-is-switching-to-lfp-batteries-globally/

J. Voelcker, Tesla Model 3, Model Y Got New Battery Chemistry, and Here's What It Means, Car and Drivwer, 2021. https://www.caranddriver.com/news/a38414682/tesla-new-cheaper-battery/ (accessed September 14, 2022)

Tesla’s Musk Hints of Battery Capacity Jump Ahead of Industry Event. CNBC-Reuters, 2020-08-25. https://www.reuters.com/article/us-tesla-batteries/teslas-musk-hints-of-battery-capacity-jump-ahead-of-industry-event-idUSKBN25L0MC

G. Crabtree, E. Kócs, L. Trahey, The Energy-Storage Frontier: Lithium-Ion Batteries and Beyond, MRS Bulletin 40 (2015) 1067-1076. https://doi.org/10.1557/mrs.2015.259

M. F. R. Dominko, T. Otuszewski, S. Perraud, C. Punckt, J.-M. Tarascon, T. Vegge, M. Winter, Battery 2030+ – a Long Term-Roadmap for Forward Looking Battery Research in Europe, K. Edström, S. Perraud Eds., 2020. https://battery2030.eu/research/roadmap/

F. Lambert, Tesla Is Already Using Cobalt-Free LFP Batteries in Half of Its New Cars Produced, 2022.

M. Stock, W. G. Stock, Intellectual Property Information. A Case Study of Questel-Orbit, Information Services and Use 25 (2005) 163-180. https://doi.org/10.3233/isu-2005-253-404

Published
18-09-2022
Section
Batteries and supercapcitors