Solvent dielectric effect on electrochemical properties of 3,4-propylenedioxythiophene

Original scientific paper

Authors

  • Keziban Huner Department of Chemistry, Istanbul Technical University,Maslak, 34469 Istanbul, Turkey and Department of Chemistry, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey https://orcid.org/0000-0001-7235-6338
  • Abdulkadir Sezai Sarac Department of Chemistry, Istanbul Technical University,Maslak, 34469 Istanbul, Turkey and Polymer Science & Technology, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey https://orcid.org/0000-0001-7513-1740

DOI:

https://doi.org/10.5599/jese.1035

Keywords:

surface modification, electro-polymerization, polythiophene derivate, electrochemical impedance spectra, carbon fiber
Graphical Abstract

Abstract

The present study is focused on the electrochemical properties of poly(3,4-propylene­dioxy­thiophene) (Poly(ProDOT)), electrocoated on the single carbon-fiber microelectrode (SCFME) in different electrolytic media, with different solvent dielectric constants (35.9, 41.7, 47.5, 53.3, 59.1 and 64.9). The highest deposition charge density of 24.49 mC cm-2 and the highest specific capacitance of 23.17 mF cm-2 were obtained for Poly(ProDOT) synthesized in a medium with the lowest solvent dielectric constant (epsilon = 35.9). Electrochemical impedance spectroscopy (EIS) results of Poly(ProDOT) coated SCFME measured at open circuit potential showed continuously increased impedance magnitudes as ε was increased from 35.9 to 59.1. For all films, almost capacitive impedance responses at lower frequencies at least were obtained. The highest capacitance was observed for the polymer film synthesized in the medium of epsilon = 35.9. The impedance of this film was also measured in different solvent mixtures with different dielectric constants at open circuit potential.

Downloads

Download data is not yet available.

References

S. Song, G. Xu, B. Wang, J. Gu, H. Wei, Z. Ren, L. Zhang, J. Zhao, Y. Li, Synthetic Metals 278 (2021) 116822. https://doi.org/10.1016/j.synthmet.2021.116822

R. Boguzaite, V. Ratautaite, L. Mikoliunaite, V. Pudzaitis, A. Ramanaviciene, A. Ramanavicius, Journal of Electroanalytical Chemistry 886 (2021) 115132. https://doi.org/10.1016/j.jelechem.2021.115132

G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A.J. Robinson, G. Hadziioannou, A. Pakdel, Materials Today Physics (2021) 100402. https://doi.org/10.1016/j.mtphys.2021.100402

K. Huner, F. Karaman, Materials Research Express 6(1) (2018) 015302. https://doi.org/10.1088/2053-1591/aae462

S. Paul, K. Balasubramanian, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 245 (2021) 118901. https://doi.org/10.1016/j.saa.2020.118901

K. Yamabe, H. Goto, Fibers and Polymers 19(1) (2018) 248-253. https://doi.org/10.1007/s12221-018-7692-8

B. Lu, S. Zhang, L. Qin, S. Chen, S. Zhen, J. Xu, Electrochimica Acta 106 (2013) 201-208. https://doi.org/10.1016/j.electacta.2013.05.068

D. Zalka, S. Vesztergom, M. Ujvári, G. G. Láng, Journal of Electrochemical Science and Engineering 8(2) (2018) 151-162. https://doi.org/10.5599/jese.508

L. F. Marchesi, S. C. Jacumasso, R. C. Quintanilha, H. Winnischofer, M. Vidotti, Electrochimica Acta 174 (2015) 864-870.https://doi.org/10.1016/j.electacta.2015.05.077

K. Darowicki, J. Kawula, Electrochimica Acta 49(27) (2004) 4829-4839. https://doi.org/10.1016/j.electacta.2004.05.035

K. Cysewska, J. Karczewski, P. Jasiński, Electrochimica Acta 176 (2015) 156-161. https://doi.org/10.1016/j.electacta.2015.07.006

J. Bobacka, A. Lewenstam, A. Ivaska, Journal of Electroanalytical Chemistry 489(1-2) (2000) 17-27. https://doi.org/10.1016/S0022-0728(00)00206-0

A.J. Bard, L.R. Faulkner, Methods 2(482) (2001) 580-632.

X. Cui, D.C. Martin, Sensors and Actuators B: Chemical 89(1-2) (2003) 92-102. https://doi.org/10.1016/S0925-4005(02)00448-3

J. Yang, D.C. Martin, Journal of Materials Research 21(5) (2006) 1124-1132. https://doi.org/10.1557/jmr.2006.0145

S. J. Wilks, S. M. Richardson-Burn, J. L. Hendricks, D. Martin, K. J. Otto, Frontiers in Neuroengineering 2 (2009) 7. https://doi.org/10.3389/neuro.16.007.2009

E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, A. J. Hudspeth, Principles of Neural Science, Fifth Editon, Cenveo Publisher Services, Columbia, MD, USA, 2013.

S. M. Richardson-Burns, J. L. Hendricks, B. Foster, L. K. Povlich, D.-H. Kim, D. C. Martin, Biomaterials 28(8) (2007) 1539-1552. https://doi.org/10.1016/j.biomaterials.2006.11.026

L. K. Povlich, J. C. Cho, M. K. Leach, J. M. Corey, J. Kim, D. C. Martin, Biochimica et Biophysica Acta (BBA)-General Subjects 1830(9) (2013) 4288-4293. https://doi.org/10.1016/j.bbagen.2012.10.017

X. Strakosas, B. Wei, D. C. Martin, R. M. Owens, Journal of Materials Chemistry B 4(29) (2016) 4952-4968. https://doi.org/10.1039/C6TB00852F

J. M. Murbach, S. Currlin, A. Widener, Y. Tong, S. Chhatre, V. Subramanian, D. C. Martin, B. N. Johnson, K. J. Otto, Mrs Communications 8 (2018) 1043-1049. https://doi.org/10.1557/mrc.2018.138

J. D. Stenger-Smith, C. K. Webber, N. Anderson, A. P. Chafin, K. Zong, J. R. Reynolds, Journal of the Electrochemical Society 149(8) (2002) A973. https://doi.org/10.1149/1.1485773

J. D. Stenger-Smith, A. Guenthner, J. Cash, J. A. Irvin, D. J. Irvin, Journal of the Electrochemical Society 157(3) (2010) A298. https://doi.org/10.1149/1.3276094

Y. Sulaiman, R. Kataky, Journal of the Electrochemical Society 159(2) (2011) F1. https://doi.org/10.1149/2.019202jes

A. S. Sarac, S. A. Tofail, M. Serantoni, J. Henry, V. J. Cunnane, J. B. McMonagle, Applied Surface Science 222(1-4) (2004) 148-165. https://doi.org/10.1016/j.apsusc.2003.08.008

A. S. Sarac, H.-D. Gilsing, A. Gencturk, B. Schulz, Progress in Organic Coatings 60(4) (2007) 281-286. https://doi.org/10.1016/j.porgcoat.2007.07.025

A. S. Saraç, E. Doğru, M. Ateş, E. A. Parlak, Turkish Journal of Chemistry 30(4) (2006) 401-418.

F. G. Guler, A. S. Sarac, Express Polymer Letters 5(6) (2011) 493-505. http://doi.org/10.3144/expresspolymlett.2011.48

P. Yadav, S. Naqvi, A. Patra, RSC Advances 10(21) (2020) 12395-12406.https://doi.org/10.1039/D0RA01436B

A. Mishra, C.-Q. Ma, P. Bauerle, Chemical Reviews 109(3) (2009) 1141-1276. https://doi.org/10.1021/cr8004229

I.F. Perepichka, D. F. Perepichka, Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 2 Volume Set, John Wiley & Sons, 2009. ISBN: 978-0-470-05732-2.

R. Zhang, Y. Huang, L. Liu, Y. Tang, D. Su, L. Xu, Applied Surface Science 257(6) (2011) 1840-1844. https://doi.org/10.1016/j.apsusc.2010.08.102

T. Karazehir, M. Ates, A. S. Sarac, Journal of the Electrochemical Society 163(8) (2016) G107. https://doi.org/10.1149/2.1011608jes

J. F. Rusling, S. L. Suib, Advanced Materials 6(12) (1994) 922-930. https://doi.org/10.1002/adma.19940061204

N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, Journal of Chemical Education 95(2) (2018) 197-206. https://doi.org/10.1021/acs.jchemed.7b00361

G. Walter, Corrosion Science 26(9) (1986) 681-703. https://doi.org/10.1016/0010-938X(86)90033-8

R. Cottis, S. Turgoose, NACE International, Houston, 2015, TX.77084-4906.

E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists,Wiley-VCH, Capstone, NY, 1993.

A. J. Bard, M. V. Mirkin (eds.), Scanning Electrochemical Microscopy, CRC Press, 2001. 664. https://doi.org/10.1201/9780203910771

J.R. Macdonald, E. Barsoukov, History 1(8) (2005) 1-13.

T. Girija, M. Sangaranarayanan, Synthetic Metals 156(2-4) (2006) 244-250. https://doi.org/10.1016/j.synthmet.2005.12.006

T. Karazehir, B. Sarac, H.-D. Gilsing, S. Gumrukcu, J. Eckert, A. S. Sarac, Molecular Systems Design & Engineering 6(3) (2021) 214-233. https://doi.org/10.1039/D0ME00126K

P. Jakhar, M. Shukla, V. Singh, Journal of Materials Science: Materials in Electronics 30(4) (2019) 3563-3573. https://doi.org/10.1007/s10854-018-00634-w

P. Jakhar, M. Shukla, V. Singh, Journal of the Electrochemical Society 165(7) (2018) G80. https://doi.org/10.1149/2.0461807jes

V. Safarnavadeh, K. Zare, A. R. Fakhari, Biosensors and Bioelectronics 49 (2013) 159-163. https://doi.org/10.1016/j.bios.2013.04.043

M. Şenel, M. Dervisevic, E. Çevik, Current Applied Physics 13(7) (2013) 1199-1204. https://doi.org/10.1016/j.cap.2013.03.004.

Y. Wen, X. Duan, J. Xu, R. Yue, D. Li, M. Liu, L. Lu, H. He, Journal of Solid State Electrochemistry 16(12) (2012) 3725-3738. https://doi.org/10.1007/s10008-012-1803-7

D. Li, Y.-p. Wen, J.-k. Xu, H.-h. He, M. Liu, Chinese Journal of Polymer Science 30(5) (2012) 705-718. https://doi.org/10.1007/s10118-012-1167-6

M. Asplund, T. Nyberg, O. Inganäs, Polymer Chemistry 1(9) (2010) 1374-1391. https://doi.org/10.1039/C0PY00077A

U. A. Aregueta-Robles, A. J. Woolley, L. A. Poole-Warren, N. H. Lovell, R. A. Green, Frontiers in Neuroengineering 7 (2014) 15. https://doi.org/10.3389/fneng.2014.00015

S. Palchoudhury, K. Ramasamy, R. K. Gupta, A. Gupta, Frontiers in Materials 5 (2019) 83. https://doi.org/10.3389/fmats.2018.00083

Y. Han, L. Dai, Macromolecular Chemistry and Physics 220(3) (2019) 1800355. https://doi.org/10.1002/macp.201800355

Published

01-10-2021

How to Cite

Huner, K. ., & Sarac, A. S. (2021). Solvent dielectric effect on electrochemical properties of 3,4-propylenedioxythiophene: Original scientific paper. Journal of Electrochemical Science and Engineering, 11(4), 263–277. https://doi.org/10.5599/jese.1035

Issue

Section

Electrochemical Science