Char of Tagetes erecta (African marigold) flower as a potential electrode material for supercapacitors

Original scientific paper

Authors

  • Venkata Naga Kanaka Suresh Kumar Nersu Department of Instrument Technology, Andhra University College of Engineering (A), Visakhapatnam, Andhra Pradesh 530003, India https://orcid.org/0000-0003-0150-2814
  • Bhujanga Rao Annepu Department of Instrument Technology, Andhra University College of Engineering (A), Visakhapatnam, Andhra Pradesh 530003, India
  • Subhakaran Singh Rajaputra Centre for Advanced Energy Studies, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India https://orcid.org/0000-0003-1049-2275
  • Satya Srinivasa Babu Patcha Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India https://orcid.org/0000-0002-9597-4873

DOI:

https://doi.org/10.5599/jese.1381

Keywords:

Biochar, gel polymer electrolyte, flower waste, electric double layer capacitor (EDLC), carbon cloth, hydrophilicity
Graphical Abstract

Abstract

A char of Tagetes erecta flowers (TFC) was derived through simple thermal decompo­sition of Tagetes erecta flowers (TF). Physico-chemical properties of as-prepared TFC were evaluated using XRD, FESEM, FTIR, TGA, N2 adsorption-desorption isotherm analysis and water contact angle measurements. The practicality and applicability of TFC as promising electrode material in supercapacitors (SCs) were evaluated in full-cell configuration by performing electrochemical characterizations like CV, GCD and EIS on a lab-scale TFC-based symmetric SC. TFC exhibited a remarkable specific capacitance of 118.4 F g-1 at a constant current density of 0.2 A g-1 and a specific energy of 4.1 Wh kg-1 at specific power of 0.1 kW kg-1. TFC showed excellent cyclic stability by retaining 92 % of its initial capacitance even after 6000 GCD cycles at 2 A g-1. The superior capacitive behaviour and cyclic stability of TFC could be attributed to its good wettability towards water. This excellent supercapacitive performance of TFC estab­lishes it as a potential floral waste-derived carbon-based electrode material for SCs.

Downloads

Download data is not yet available.

References

P. Dixit, S. Tripathi, K. N. Verma, International Research Journal of Pharmacy 4(1) (2013) 43-48. https://irjponline.com/admin/php/uploads/1566_pdf.pdf

S. Doda, O. Sahu, Materials Today: Proceedings 48 (2022) 932-937. https://doi.org/10.1016/j.matpr.2021.05.309

M. S. Waghmode, A. B. Gunjal, N. N. Nawani, N. N. Patil, Waste and Biomass Valorization 9(1) (2018) 33-43. https://doi.org/10.1007/s12649-016-9763-2

P. Singh, U. Bajpai, Environmental Progress & Sustainable Energy 31(4) (2012) 637-641. https://doi.org/10.1002/ep. 10589

A. Mahindrakar, Indian Journal of Pure and Applied Biosciences 6(2) (2018) 325-329. http://dx.doi.org/10.18782/2320-7051.5357

M. Makhania, A. Upadhyay, International Journal of Innovative and Emerging Research in Engineering 2(2) (2015) 145-147. http://ijiere.com/Finalpaper/Finalpaper20153110294170_deleted.pdf

V. Kumar, S. Kumari, P. Kumar, in: Environmental degradation: causes and remediation strategies 1 (2020) 154. https://doi.org/10.26832/aesa-2020-edcrs-011

S. Herou, P. Schlee, A.B. Jorge, M. Titirici, Current Opinion in Green and Sustainable Chemistry 9 (2018) 18-24. https://doi.org/10.1016/j.cogsc.2017.10.005

A. Afif, S. M. Rahman, A. T. Azad, J. Zaini, M. A. Islan, A. K. Azad, Journal of Energy Storage 25 (2019) 100852. https://doi.org/10.1016/j.est.2019.100852

X. Chen, R. Paul, L. Dai, National Science Review 4(3) (2017) 453-489. https://doi.org/10.1093/nsr/nwx009

V. N. K. S. K. Nersu, B. R. Annepu, S. S. B. Patcha, S. S. Rajaputra, Journal of Electrochemical Science and Engineering 12(3) (2022) 451-462. https://doi.org/10.5599/jese.1310

Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Green Chemistry 19(17) (2017) 4132-4140. https://doi.org/10.1039/C7GC01681F

Y. Wang, Z. Zhao, W. Song, Z. Wang, X. Wu, Journal of Materials Science 54(6) (2019) 4917-4927. https://doi.org/10.1007/s10853-018-03215-8

Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, J. Luo, Advanced Functional Materials 27(3) (2017) 1604687. https://doi.org/10.1002/adfm.201604687

S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C. M. Li, Advanced Energy Materials 8(11) (2018) 1702545. https://doi.org/10.1002/aenm.201702545

W. Liu, J. Mei, G. Liu, Q. Kou, T. Yi, S. Xiao, ACS Sustainable Chemistry Engineering 6(9) (2018) 11595-11605. https://doi.org/10.1021/acssuschemeng.8b01798

C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, Journal of Materials Chemistry A 6(3) (2018) 1244-1254. https://doi.org/10.1039/C7TA07579K

X. Tian, H. Ma, Z. Li, S. Yan, L. Ma, F. Yu, C. Wong, Journal of Power Sources 359 (2017) 88-96. https://doi.org/10.1016/j.jpowsour.2017.05.054

H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, M. Zheng, Journal of Power Sources 302 (2016) 164-173. https://doi.org/10.1016/j.jpowsour.2015.10.063

I. I. Misnon, N. K. M. Zain, R. Abd Aziz, B. Vidyadharan R. Jose, Electrochimica Acta 174 (2015) 78-86. https://doi.org/10.1016/j.electacta.2015.05.163

U. Thubsuang, S. Laebang, N. Manmuanpom, S. Wongkasemjit, T. Chaisuwan, Journal of Materials Science 52(11) (2017) 6837-6855. https://doi.org/10.1007/s10853-017-0922-z

H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, D. Mitlin, ACS Nano 7(6) (2013) 5131-5141. https://doi.org/10.1021/nn400731g

L. Ji, B. Wang, Y. Yu, N. Wang, J. Zhao, Electrochimica Acta 331 (2020) 135348. https://doi.org/10.1016/j.electacta.2019.135348

C. Zequine, C.K. Ranaweera, Z. Wang, P. R. Dvornic, P. K. Kahol, S. Singh, R. K. Gupta, Scientific Reports 7(1) (2017) 1174. https://doi.org/10.1038/s41598-017-01319-w

S. Qu, J. Wan, C. Dai, T. Jin, F. Ma, Journal of Alloys and Compounds 751 (2018) 107-116. https://doi.org/10.1016/j.jallcom.2018.04.123

A. K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, C. Wang, B. Sun, G. Wang, Chemistry-A European Journal 23(15) (2017) 3683-3690. https://doi.org/10.1002/chem.201605019

S. T. Senthilkumar, R. K. Selvan, Chem Electro Chem 2(8) (2015) 1111-1116. https://doi.org/10.1002/celc.201500090

G. Zhu, L. Ma, H. Lv, Y. Hu, T. Chen, R. Chen, J. Liu, Nanoscale 9(3) (2017) 1237-1243. https://doi.org/10.1039/C6NR08139H

J. Xia, N. Zhang, S. Chong, Y. Chen, C. Sun, Green Chemistry 20(3) (2018) 694-700. https://doi.org/10.1039/C7GC03426A

M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, L. Zhang, Journal of Solid State Electrochemistry 17(4) (2013) 1005-1012. https://doi.org/10.1007/s10008-012-1946-6

X. Yan, Y. Jia, L. Zhuang, L. Zhang, K. Wang, X. Yao, ChemElectroChem 5(14) (2018) 1874-1879. https://doi.org/10.1002/celc.201800068

M. Liu, J. Niu, Z. Zhang, M. Dou, F. Wang, Nano Energy 51 (2018) 366-372. https://doi.org/10.1016/j.nanoen.2018.06.037

W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy and Environmental Science 7(1) (2014) 379-386. https://doi.org/10.1039/C3EE43111H

F. Gao, J. Qu, C. Geng, G. Shao, M. Wu, Journal of Materials Chemistry A 4(19) (2016) 7445-7452. https://doi.org/10.1039/C6TA01314G

Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, D. Mitlin, Advanced Energy Materials 2(4) (2012) 431-437. https://doi.org/10.1002/aenm.201100548

Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, Journal of Power Sources 225 (2013) 101-107. https://doi.org/10.1016/j.jpowsour.2012.10.022

X. Yu, Y. Wang, L. Li, H. Li, Y. Shang, Scientific Reports 7(1) (2017) 45378. https://doi.org/10.1038/srep45378

C. Zhao, Y. Huang, C. Zhao, X. Shao, Z. Zhu, Electrochimica Acta 291 (2018) 287-296. https://doi.org/10.1016/j.electacta.2018.09.136

S. Gao, X. Li, L. Li, X. Wei, Nano Energy 33 (2017) 334-342. https://doi.org/10.1016/j.nanoen.2017.01.045

L. Xie, G. Sun, F. Su, X. Guo, Q. Kong, X. Li, C. M. Chen, Journal of Materials Chemistry A 4(5) (2016) 1637-1646. https://doi.org/10.1039/C5TA09043A

Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nano Energy 19 (2016) 165-175. https://doi.org/10.1016/j.nanoen.2015.10.038

K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, L. Liu, Electrochimica Acta 166 (2015) 1-11. https://doi.org/10.1016/j.electacta.2015.03.048

B. Salehi, M. Valussi, M. F. B. Morais-Braga, J. N. P. Carneiro, A. L. A. B. Leal, H. D. M. Coutinho, J. Molecules 23(11) (2018) 2847. https://doi.org/10.3390/molecules23112847

V. Kumar, R. S. Singh, M. Pal, M. D. Ojha, R. B. Verma, R. K. Verma, A. P. Singh, Journal of Pharmacognosy and Phytochemistry 8(1) (2019) 819-822. https://www.phytojournal.com/archives/2019/vol8issue1/PartN/8-1-158-748.pdf

G. K. Gupta, P. Sagar, M. Srivastava, A. K. Singh, J. Singh, S. K. Srivastava, A. Srivastava, International Journal of Hydrogen Energy 46(77) (2021) 38416-38424. https://doi.org/10.1016/j.ijhydene.2021.09.094

S. S. Rajaputra, N. Pennada, A. Yerramilli, N. M. Kummara, Journal of Electrochemical Energy Conversion and Storage 18(4) (2021) 041008. https://doi.org/10.1115/1.4051143

S. S. Rajaputra, N. Pennada, A. Yerramilli, N. M. Kummara, Ionics 27(9) (2021) 4069-4082. https://doi.org/10.1007/s11581-021-04144-4

S. S. Rajaputra, N. Pennada, A. Yerramilli, N. M. Kummara, Journal of Electrochemical Science and Engineering 11(3) (2021) 197-207. https://doi.org/10.5599/jese.1031

S. López-Romero, J. Chávez-Ramírez, Matéria (Rio de Janeiro) 12 (2007) 487-493. https://doi.org/10.1590/S1517-70762007000300009

S. Lanfredi, M.A. Nobre, P.S. Poon, J. Matos, Molecules 25(1) (2020) 96. https://doi.org/10.3390/molecules25010096

T. Eguchi, D. Tashima, M. Fukuma, S. Kumagai, Journal of Cleaner Production 259 (2020) 120822. https://doi.org/10.1016/j.jclepro.2020.120822

P. Singh, R. Singh, A. Borthakur, S. Madhav, V. K. Singh, D. Tiwary, P. K. Mishra, Waste Management 77 (2018) 78-86. https://doi.org/10.1016/j.wasman.2018.04.041

R. Singh, J.N. Babu, R. Kumar, P. Srivastava, P. Singh, A.S. Raghubanshi, Ecological Engineering 77 (2015) 324-347. https://doi.org/10.1016/j.ecoleng.2015.01.011

H. Yang, Z. Bo, J. Yan, K. Cen, International Journal of Heat and Mass Transfer 133 (2019) 416-425. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.134

D. P. Dubal, N. R. Chodankar, D.-H. Kim, P. R. Gomez, Chemical Society Reviews 47 (2018) 2065-2129. https://doi.org/10.1039/C7CS00505A

H. Wang, H. Yi, X. Chen, X. Wang, Journal of Materials Chemistry A 2(9) (2014) 3223-3230. https://doi.org/10.1039/C3TA15046A

S. J. Rajasekaran, V. Raghavan, Journal of Electrochemical Science and Engineering 12(3) (2022) 545-556. https://doi.org/10.5599/jese.1314

Downloads

Published

25-07-2022

How to Cite

Nersu, V. N. K. S. K., Annepu, B. R. ., Rajaputra, S. S., & Patcha, S. S. B. (2022). Char of Tagetes erecta (African marigold) flower as a potential electrode material for supercapacitors: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(4), 787–797. https://doi.org/10.5599/jese.1381

Issue

Section

Batteries and supercapcitors

Most read articles by the same author(s)