Rice husk char as a potential electrode material for supercapacitors

Original scientific paper

  • Venkata Naga Kanaka Suresh Kumar Nersu Department of Instrument Technology, Andhra University College of Engineering (A), Visakhapatnam, Andhrapradesh 530003, India https://orcid.org/0000-0003-0150-2814
  • Bhujanga Rao Annepu Department of Instrument Technology, Andhra University College of Engineering (A), Visakhapatnam, Andhrapradesh 530003, India
  • Satya Srinivasa Babu Patcha Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India https://orcid.org/0000-0002-9597-4873
  • Subhakaran Singh Rajaputra Centre for Advanced Energy Studies, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India https://orcid.org/0000-0003-1049-2275
Keywords: Biochar, carbon-SiO2 composite, superhydrophilicity, carbon cloth, nanocomposite gel polymer electrolyte, electric double layer capacitor (EDLC)
Graphical Abstract

Abstract

Rice husk char (RHC), a carbon-based material, was obtained by thermal decomposition of rice husk (RH) biological waste. Physicochemical properties of RHC were determined using XRD, FTIR, FESEM, TGA, N2 adsorption-desorption studies and contact angle mea­surement. A lab-scale supercapacitor (SC) was fabricated using as-prepared RHC and its super­capa­citive behaviour was investigated using techniques like CV, GCD and EIS studies. Each of RHC electrode showed a specific capacitance of 80.2 F g-1 at the constant charging/disharging current density of 0.05 A g-1. RHC exhibited 90 % retention of its initial capacitance even after 5000 GCD. The presence of amorphous SiO2 in RHC could contribute to the excellent wettability of RHC towards the water, enhancing its effective sur­face area by improving access of electrolyte ions into RHC. This remarkable super­capa­citi­ve performance of biological waste-derived RHC demonstrates its potential as a cost ef­fecttive and environ­mentally benign electrode material for aqueous electrolyte-based SCs.

Downloads

Download data is not yet available.

References

S. Herou, P. Schlee, A. B. Jorge, M. Titirici, Current Opinion in Green and Sustainable Chemistry 9 (2018) 18-24. https://doi.org/10.1016/j.cogsc.2017.10.005

A. Afif, S. M. H. Rahman, A. T. Azad, J. Zaini, M. A. Islan, A. K. Azad, Journal of Energy Storage 25 (2019) 100852. https://doi.org/10.1016/j.est.2019.100852

T. Ramesh, N. Rajalakshmi, K. S. Dhathathreyan, L. Ram Gopal Reddy, ACS Omega 3 (2018) 12832-12840. https://doi.org/10.1021/acsomega.8b01850

G. Zhang, Y. Chen, Y. Chen, H. Guo, Materials Research Bulletin 102 (2018) 391-398. https://doi.org/10.1016/j.materresbull.2018.03.006

X. Chen, R. Paul, L. Dai, National Science Review 4(3) (2017) 453-489. https://doi.org/10.1093/nsr/nwx009

H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M. Zheng, Journal of Power Sources 302 (2016) 164-173. https://doi.org/10.1016/j.jpowsour.2015.10.063

Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Green Chemistry 19(17) (2017) 4132-4140. https://doi.org/10.1039/C7GC01681F

S.-Y. Lu, M. Jin, Y. Zhang, Y.-B. Niu, J.-C. Gao, C. M. Li, Advanced Energy Materials 8(11) (2018) 1702545. https://doi.org/10.1002/aenm.201702545

W. Liu, J. Mei, G. Liu, Q. Kou, T. Yi, S. Xiao, ACS Sustainable Chemistry Engineering 6(9) (2018) 11595-11605. https://doi.org/10.1021/acssuschemeng.8b01798

Y. Wang, Z. Zhao, W. Song, Z. Wang, X. Wu, Journal of Materials Science 54(6) (2019) 4917-4927. https://doi.org/10.1007/s10853-018-03215-8

Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q.-H. Yang, J. Luo, Advanced Functional Materials 27(3) (2017) 1604687. https://doi.org/10.1002/adfm.201604687

C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, Journal of Materials Chemistry A 6(3) (2018) 1244-1254. https://doi.org/10.1039/C7TA07579K

X. Tian, H. Ma, Z. Li, S. Yan, L. Ma, F. Yu, G. Wang, X. Guo, Y. Ma, C. Wong, Journal of Power Sources 359 (2017) 88-96. https://doi.org/10.1016/j.jpowsour.2017.05.054

L. Ji, B. Wang, Y. Yu, N. Wang, J. Zhao, Electrochimica Acta 331 (2020) 135348. https://doi.org/10.1016/j.electacta.2019.135348

C. Zequine, C.K. Ranaweera, Z. Wang, P. R. Dvornic, P. K. Kahol, S. Singh, P. Tripathi, O. N. Srivastava, S. Singh, B.K. Gupta, G. Gupta, R. K. Gupta, Scientific Reports 7(1) (2017) 1174. https://doi.org/10.1038/s41598-017-01319-w

H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T.J. Stephenson, C.K. King’ondu, C.M.B. Holt, B.C. Olsen, J.K. Tak, D. Harfield, A.O. Anyia, D. Mitlin, ACS Nano 7(6) (2013) 5131-5141. https://doi.org/10.1021/nn400731g

G. Zhu, L. Ma, H. Lv, Y. Hu, T. Chen, R. Chen, J. Liang, X. Wang, Y. Wang, C. Yan, Z. Tie, Z. Jin, J. Liu, Nanoscale 9(3) (2017) 1237-1243. https://doi.org/10.1039/C6NR08139H

S. Qu, J. Wan, C. Dai, T. Jin, F. Ma, Journal of Alloys and Compounds 751 (2018) 107-116. https://doi.org/10.1016/j.jallcom.2018.04.123

S.T. Senthilkumar, R. K. Selvan, ChemElectroChem 2(8) (2015) 1111-1116. https://doi.org/10.1002/celc.201500090

A. K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, C. Wang, B. Sun, G. Wang, Chemistry-A European Journal 23(15) (2017) 3683-3690. https://doi.org/10.1002/chem.201605019

J. Xia, N. Zhang, S. Chong, D. Li, Y. Chen, C. Sun, Green Chemistry 20(3) (2018) 694-700. https://doi.org/10.1039/C7GC03426A

X. Yan, Y. Jia, L. Zhuang, L. Zhang, K. Wang, X. Yao, ChemElectroChem 5(14) (2018) 1874-1879. https://doi.org/10.1002/celc.201800068

I. I. Misnon, N. K. M. Zain, R. Abd Aziz, B. Vidyadharan, R. Jose, Electrochimica Acta 174 (2015) 78-86. https://doi.org/10.1016/j.electacta.2015.05.163

W. H. Kwan, Y. S. Wong, Materials Science for Energy Technologies 3 (2020) 501-507. https://doi.org/10.1016/j.mset.2020.05.001

M. López-Alonso, M. Martín-Morales, M. J. Martínez-Echevarría, F. Agrela, M. Zamorano, in: Waste and by products in Cement-Based Materials, Innovative Sustainable Materials for a Circular Economy, J. de Brito, C. Thomas, C. Medina, F. Agrela (Eds.), Woodhead Publishing, Cambridge, UK, 2021, p. 89-137. https://doi.org/10.1016/B978-0-12-820549-5.00011-5

S. G. Sara, European Journal of Mechanical Engineering Research 8(1) (2021) 1-9. https://www.eajournals.org/wp-content/uploads/A-Review-of-the-Potential-of-Rice-Husk-RH-and-Periwinkle-Shell-PWS.pdf

N. Soltani, A. Bahrami, M. I. Pech-Canul, L. A. González, Chemical Engineering Journal 264 (2015) 899-935. https://doi.org/10.1016/j.cej.2014.11.056

B. Singh, in: Waste and supplementary cementitious materials in concrete: characterisation, properties and applications, R. Siddique, P. Cachim (Eds.), Woodhead Publishing, Cambridge, UK, 2018, p. 416-460. https://doi.org/10.1016/B978-0-08-102156-9.00013-4

S. K. S. Hossain, L. Mathur, P. K. Roy, Journal of Asian Ceramic Societies 6(4) (2018) 299-313. https://doi.org/10.1080/21870764.2018.1539210

S. Zhang, Q. Zhang, S. Zhu, H. Zhang, X Liu, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43(3) (2021) 282-290. https://doi.org/10.1080/15567036.2019.1624881

H. Wang, D. Wu, J. Zhou, H. Ma, D. Xu, B, Qian, S. Tao, Z. Wang, BioResources 13(2) (2018) 4279-4289. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_13_2_4279_Wang_Supercapacitor_Electrode/6076

Z. Chen, X. Wang, B. Xue, W. Li, Z. Ding, X. Yang, J. Qiu, Z. Wang, Carbon 161 (2020) 432-444. https://doi.org/10.1016/j.carbon.2020.01.088

A. Ganesan, R. Mukherjee, J. Raj, M. M. Shaijumon, Journal of Porous Materials 21(5) (2014) 839-847. https://doi.org/10.1007/s10934-014-9833-4

X. He, P. Ling, M. Yu, X. Wang, X. Zhang, M. Zheng, Electrochimica Acta 105 (2013) 635-641. https://doi.org/10.1016/j.electacta.2013.05.050

Y. Xiao, M. Zheng, X. Chen, H. Feng, H. Dong, H. Hu, Y. Liang, S.P. Jiang, Y. Liu, Chemistry Select 2(22) (2017) 6438-6445. https://doi.org/10.1002/slct.201701275

W. Zhang, N. Lin, D. Liu, J. Xu, J. Sha, J. Yin, X. Tan, H. Yang, H. Lu, H. Lin, Energy 128 (2017) 618-625. https://doi.org/10.1016/j.energy.2017.04.065

Y. Guo, X. Chen, W. Liu, X. Wang, Y. Feng, Y. Li, L. Ma, B. Di, Y. Tian, Journal of Electronic Materials 49(2) (2020) 1081-1089 https://doi.org/10.1007/s11664-019-07785-4

S. Singh Rajaputra, P. Nagalakshmi, A. Yerramilli, K. Naga Makesh, Journal of Electrochemical Energy Conversion and Storage 18(4) (2021) 041008. https://doi.org/10.1115/1.4051143

S. Singh Rajaputra, P. Nagalakshmi, A. Yerramilli, K. Naga Makesh, Ionics 27(9) (2021) 4069-4082. https://doi.org/10.1007/s11581-021-04144-4

S. Singh Rajaputra, N. Pennada, A. Yerramilli, N. M. Kummara, Journal of Electrochemical Science and Engineering 11(3) (2021) 197-207 https://doi.org/10.5599/jese.1031

M. K. Seliem, S. Komarneni, M. R. Abu Khadra, Microporous and Mesoporous Materials 224 (2016) 51-57. https://doi.org/10.1016/j.micromeso.2015.11.011

T. A. Tamanna, S. A. Belal, M. A. H. Shibly, A.N. Khan, Scientific Reports 11(1) (2021) 7622. https://doi.org/10.1038/s41598-021-87128-8

Z. Emdadi, N. Asim, M. A. Yarmo, K. Sopian, International Journal of Chemical Engineering and Applications 6(4) (2015) 273-276. http://dx.doi.org/10.7763/IJCEA.2015.V6.495

M. F. Zawrah, B. G. Alhogbi, Ceramics International 47(16) (2021) 23240-23248. https://doi.org/10.1016/j.ceramint.2021.05.036

S. He, G. Chen, H. Xiao, G. Shi, C. Ruan, Y. Ma, H. Dai, B. Yuan, X. Chen, X. Yang, Journal of Colloid and Interface Science 582 (Part A) (2021) 90-101. https://doi.org/10.1016/j.jcis.2020.08.021

P. Araichimani, K. M. Prabu, G. S. Kumar, G. Karunakaran, S. Surendhiran, M. Shkir, Research Square (2021) 1-9. https://doi.org/10.21203/rs.3.rs-1068714/v1

P. Okoczuk, M. Łapiński, T. Miruszewski, P. Kupracz, L. Wicikowski, Materials 14(9) (2021) 2158. https://doi.org/10.3390/ma14092158

T. Eguchi, D. Tashima, M. Fukuma, S. Kumagai, Journal of Cleaner Production 259 (2020) 120822. https://doi.org/10.1016/j.jclepro.2020.120822

N. F. T. Arifin, N. Yusof, N. A. H. Md Nordin, J. Jaafar, A. F. Ismail, F. Aziz, W. N. Wan Salleh, International Journal of Hydrogen Energy 46(60) (2021) 31084-31095. https://doi.org/10.1016/j.ijhydene.2021.02.051

R. Asmatulu, W. S. Khan, R. J. Reddy, M. Ceylan, Polymer Composites 36(9) (2015) 1565-1573. https://doi.org/10.1002/pc.23063

S. T. Gunday, E. Cevik,, A. Yusuf, A. Bozkurt, Journal of Physics and Chemistry of Solids 137 (2020) 109209. https://doi.org/10.1016/j.jpcs.2019.109209

H. Yang, Z. Bo, J. Yan, K. Cen, International Journal of Heat and Mass Transfer 133 (2019) 416-425. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.134

S. Alipoori, S. Mazinani, S. H. Aboutalebi, F. Sharif, Journal of Energy Storage 27 (2020) 101072. https://doi.org/10.1016/j.est.2019.101072

D. P. Dubal, N. R. Chodankar, D.-H. Kim, P.R. Gomez, Chemical Society Reviews 47 (2018) 2065-2129. https://doi.org/10.1039/C7CS00505A

H. Wang, H. Yi, X. Chen, X. Wang, Journal of Materials Chemistry A 2(9) (2014) 3223-3230. https://doi.org/10.1039/C3TA15046A

E. Y. L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A. R. Mohamed, R. Jose, K. F. Chong, Electrochimica Acta 192 (2016) 110-119. https://doi.org/10.1016/j.electacta.2016.01.140

©2022 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article

distributed under the terms and conditions of the Creative Commons Attribution license

(https://creativecommons.org/licenses/by/4.0/)

Published
04-04-2022
Section
Electrochemical Science