MoS2 nanosheets-modified screen-printed electrode for the simultaneous detection of carmoisine and tartrazine

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2620

Keywords:

Transition-metal dichalcogenide, differential pulse voltammetry, electrochemical sensor, chemically modified electrodes, real sample analysis

Abstract

Molybdenum disulfide nanosheets (MoS2 NSs) were prepared using a solvothermal synthesis approach. The synthesized MoS2 nanosheets were used to modify a screen-printed electrode (MoS2 NSs / SPE), which was then utilized as the working electrode for the voltammetric analysis of carmoisine. The MoS2 NSs / SPE demonstrated enhanced electrocatalytic activity towards the oxidation of carmoisine. The oxidation peak currents of carmoisine were found to be linearly proportional to its concentration over a range of 0.1 to 400.0 μM, with a detection limit as low as 0.03 μM under optimized conditions. The MoS2 NSs / SPE also demonstrated effective performance in detecting carmoisine even when tartrazine was present, indicating its potential for simultaneous determination of both compounds. The oxidation peak potentials of the two azo dyes were sufficiently separated by 200 mV, making the MoS2 NSs / SPE suitable for the simultaneous detection of carmoisine and tartrazine using differential pulse voltammetry.

Downloads

Download data is not yet available.

References

M. V. Vieira, S. Noore, B. Tiwari, C. O'. Donnell, C. Gonçalves, L. M. Pastrana, P. Fuciños, Enhancing the stability and functionality of phycobili proteins as natural food colourants through microparticle formulation, Food Chemistry 465 (2025) 142077. https://doi.org/10.1016/j.foodchem.2024.142077

P. Barciela, A. Perez-Vazquez, M. A. Prieto, Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation, Food and Chemical Toxicology 178 (2023) 113935. https://doi.org/10.1016/j.fct.2023.113935

R. B. Shakuntala, J. Keshavayya, K. M. Mussuvir Pasha, N. D. Satyanarayan, B. N. Nippu, B. Thippeswamy, Synthesis, Spectroscopic, Computational, and Biological Evaluation of Pyrazole mono azo dyes, Journal of Molecular Structure 1309 (2024) 138045. https://doi.org/10.1016/j.molstruc.2024.138045

S. D. Nagesh, D. Satheesh, R. Devi Ravi, R. Pachaiappan, K. Manavalan, L. Cornejo-Ponce,

T. Sethuramachandran, An effective photocatalytic decomposition of azo dyes by

NiO/ZnO/g-C3N4 ternary nanocomposite under solar light excitation, Surfaces and Interfaces 56 (2024) 105578. https://doi.org/10.1016/j.surfin.2024.105578

P. Vineis, R. Pirastu, Aromatic amines and cancer, Cancer Causes Control 8 (1997) 346-355. https://doi.org/10.1023/A:1018453104303

S. Sunil, B. Kumar Mandal, Facile synthesis of CQD/g-C3N4 as a highly effective metal-free photocatalyst for the degradation of carmoisine and indigo carmine dye, Inorganic Chemistry Communications 171 (2025) 113545. https://doi.org/10.1016/j.inoche.2024.113545

H. Barrera, J. Cruz-Olivares, B. A. Frontana-Uribe, A. Gomez-Diaz, P. G. Reyes-Romero, C. E. Barrera-Diaz, Electrooxidation-plasma treatment for azo dye carmoisine (Acid Red 14) in an aqueous solution, Materials 13 (2020) 1463. https://doi.org/10.3390/ma13061463

G. P. Ford, B. I. Stevenson, J. G. Evans, Long-term toxicity study of carmoisine in rats using animals exposed in utero, Food and Chemical Toxicology 25 (1987) 919-925. https://doi.org/10.1016/0278-6915(87)90285-7

K. Rovina, S. Siddiquee, S. M. Shaarani, A review of extraction and analytical methods for the determination of tartrazine (E 102) in foodstuffs, Critical Reviews in Analytical Chemistry 47 (2017) 309-324. https://doi.org/10.1080/10408347.2017.1287558

Z. Kiayi, T. Bagheri Lotfabad, A. Heidarinasab, F. Shahcheraghi, Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763, Journal of Hazardous Materials 373 (2019) 608-619. https://doi.org/10.1016/j.jhazmat.2019.03.111

F. Turak, M. Dinç, O. Dülger, M. O. Özgür, Four derivative spectrophotometric methods for the simultaneous determination of carmoisine and ponceau 4R in drinks and comparison with high performance liquid chromatography, International Journal of Analytical Chemistry 2014 (2014) 650465. https://doi.org/10.1155/2014/650465

H. Y. Huang, Y. C. Shih, Y. C. Chen, Determining eight colorants in milk beverages by capillary electrophoresis, Journal of Chromatography A 959 (2002) 317-325. https://doi.org/10.1016/S0021-9673(02)00441-7

F. Yang, S. Li, X. Zhang, L. Wang, S. Liu, Single-particle collision electrochemical biosensing for DNA and protein kinase via sulfhydryl group manipulation and biomodification-free Pt nanoparticle, Sensors and Actuators B 426 (2025) 137099. https://doi.org/10.1016/j.snb.2024.137099

C. Yengin, F. Gulay Der, I. Alcin, B. Cihan, E. Kilinc, Non-invasive electrochemical immunosensor for reverse iontophoretic determination of cardiac troponins (cTnT & cTnI) in a simulated artificial skin model, Talanta 256 (2023) 124276. https://doi.org/10.1016/j.talanta.2023.124276

P. Kelíšková, O. Matvieiev, L. Janíková, R. Šelešovská, Recent advances in the use of screen-printed electrodes in drug analysis: A review, Current Opinion in Electrochemistry 42 (2023) 101408. https://doi.org/10.1016/j.coelec.2023.101408

J. P. Chandhana, M. Roshith, S. P. Vasu, D. V. Ravi Kumar, T. G. Satheesh Babu, High aspect ratio copper nanowires modified screen-printed carbon electrode for interference-free non-enzymatic detection of serum creatinine in neutral medium, Journal of Electroanalytical Chemistry 971 (2024) 118605. https://doi.org/10.1016/j.jelechem.2024.118605

X. Shi, Lei Shi, J. Wang, Y. Zhou, S. Zhao, Defect engineering of nanomaterials for selective electrocatalytic CO2 reduction, Matter 7 (2024) 4233-4259. https://www.cell.com/matter/fulltext/S2590-2385(24)00492-2

Y. Song, C. Tang, T. Wang, Y. Liu, X. He, C. Xie, G. Chen, C. Deng, Z. He, J. Huang, Nano FeNi-OH/Co(OH)2/NF p-n heterojunction for efficient oxygen evolution reaction and electrocatalytic urea oxidation: Built-In electric field regulated charge distribution and mechanism exploration, Applied Surface Science 670 (2024) 160649. https://doi.org/10.1016/j.apsusc.2024.160649

A. T. Ezhil Vilian, B. Dinesh, S. M. Kang, U. Maheswari Krishnan, Y. S. Huh, Y. K. Han, Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications, Microchimica Acta 186 (2019) 203. https://doi.org/10.1007/s00604-019-3287-y

Z. Xie, S. Yu, X. Ma, K. Li, L. Ding, W. Wang, D.A. Cullen, H.M. Meyer III, H. Yu, J. Tong, Z. Wu, F.Y. Zhang, MoS2 nanosheet integrated electrodes with engineered 1T-2H phases and defects for efficient hydrogen production in practical PEM electrolysis, Applied Catalysis B: Environmental 313 (2022) 121458. https://doi.org/10.1016/j.apcatb.2022.121458

M. Dinesh, K. Muthumalai, Y. Haldorai, R. Thangavelu Rajendra Kumar, MoS2 nanosheets decorated multi-walled carbon nanotube composite electrocatalyst for 4-nitrophenol detection and hydrogen evolution reaction, Electroanalysis 32 (2020) 2571-2580. https://doi.org/10.1002/elan.202060351

A .J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, Inc., New York, USA, 2000. ISBN 978-0-471-04372-0

M. Karami, M. Shabani-Nooshabadi, Electro-sensing of carmoisine and tartrazine in foodstuffs based on triple-shell CaMgFe2O4 hollow spheres-modified sensor, Materials Chemistry and Physics 318 (2024) 129289. https://doi.org/10.1016/j.matchemphys.2024.129289

S. Hamzeh, H. Mahmoudi-Moghaddam, S. Zinatloo-Ajabshir, M. Amiri, S. A. Razavi Nasab, Eco-friendly synthesis of mesoporous praseodymium oxide nanoparticles for highly efficient electrochemical sensing of carmoisine in food samples, Food Chemistry 433 (2024) 137363. https://doi.org/10.1016/j.foodchem.2023.137363

Downloads

Published

03-03-2025

Issue

Section

Electroanalytical chemistry

How to Cite

MoS2 nanosheets-modified screen-printed electrode for the simultaneous detection of carmoisine and tartrazine: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(2), 2620. https://doi.org/10.5599/jese.2620

Similar Articles

1-10 of 498

You may also start an advanced similarity search for this article.