NiMoO4 nanosheets modified carbon paste electrode for simultaneous determination of epinine and dobutamine

Original scientific paper

Authors

  • Falah H. Abdullah Department of Forensic Sciences, College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, Iraq https://orcid.org/0009-0009-2701-2275
  • Ibrahim Ayad Jihad Department of Chemistry and Biochemistry, Al-Zahraa College of Medicine, University of Basrah, Iraq https://orcid.org/0009-0008-7245-0437
  • Talib Saddam Mohsin Department of Anesthesia Techniques, Kut University College, Wasit, Iraq https://orcid.org/0009-0003-1131-5630
  • Mustafa Mudhafar Faculty of Medical Applied Sciences, University of Kerbala, Karbala, Iraq and Al-Taff University College, Kerbala, Iraq https://orcid.org/0000-0002-3785-7396
  • Raed Muslim Muhibes Department of Biochemistry, College of Medicine Misan University, Iraq https://orcid.org/0000-0002-4835-0873

DOI:

https://doi.org/10.5599/jese.2718

Keywords:

Electrochemical sensor, deoxyepinephrine, catecholamine, cardiovascular disease, dobutamine

Abstract

In this work, a carbon paste electrode was modified with ionic liquids and NiMoO4 nanosheets (NMs/IL/CPE) for voltammetric epinine detection. The NMs/IL/CPE showed good electro­catalytic activity for epinine oxidation compared to unmodified CPE. The limit of detection is 0.05 μM, and under ideal circumstances, the oxidation peak currents of epinine show a linear relationship with epinine concentration from 0.1 to 300.0 μM. Additionally, when dobutamine was present, the NMs/IL/CPE showed good activity toward epinine determi­na­tion. Its appropriateness for the simultaneous detection of these two medicines using dif­ferential pulse voltammetry is shown by the separation of the oxidation peak potentials of 200 mV. Lastly, epinine and dobutamine analysis in real specimens confirmed the proposed sensor's applicability with outstanding findings (recovery 96.0 to 103.5 %, and relative standard deviation <3.6 %).

Downloads

Download data is not yet available.

References

[1] R. N. Adams, Carbon Paste Electrodes, Analytical Chemistry 30 (1958) 1576. https://doi.org/10.1021/ac60141a600

[2] M. Achache, S. El-Haddar, H. El Haddaoui, G. E. Idrissi, K. Draoui, D. Bouchta, M. Choukairi, An electrochemical sensor based on a carbon paste electrode modified with lanthanum nanocomposites for gallic acid determination in fruit juice samples, Materials Chemistry and Physics 332 (2025) 130313. https://doi.org/10.1016/j.matchemphys.2024.130313

[3] A. S. Moustapha, C. Bakouan, A. A. Mahamane, B. Guel, A manganese phthalocyanine histidine composite-modified carbon paste electrode as a biomimetic sensor for bisphenol A determination, Results in Chemistry 13 (2025) 101927. https://doi.org/10.1016/j.rechem.2024.101927

[4] S. Mutić, J. Anojčić, M. Vraneš, J. Panić, S. Papović, Voltammetric determination of organic UV filters by carbon paste electrodes modified with pyridinium-based ionic liquids, Talanta 266 (2024) 125103. https://doi.org/10.1016/j.talanta.2023.125103

[5] Y. Li, Y. Li, Y. Wang, G. Ma, X. Liu, Y. Li, J. Soar, Application of zeolitic imidazolate frameworks (ZIF-8)/ionic liquid composites modified nano-carbon paste electrode as sensor for electroanalytical sensing of 1-hydroxypyrene, Microchemical Journal 159 (2020) 105433. https://doi.org/10.1016/j.microc.2020.105433

[6] Z. Zhu, L. Qu, X. Li, Y. Zeng, W. Sun, X.Huang Direct electrochemistry and electrocatalysis of hemoglobin with carbon nanotube-ionic liquid-chitosan composite materials modified carbon ionic liquid electrode, Electrochimica Acta 55 (2010) 5959-5965. https://doi.org/10.1016/j.electacta.2010.05.050

[7] L. Zheng, J. Wu, J. Wang, Y. Wu, X. Huang Preparation of microelectrode based on molecularly imprinted monolith using ionic liquids as functional monomers for specific separation and enrichment of phenolic acids, Separation and Purification Technology 353 (2025) 128548. https://doi.org/10.1016/j.seppur.2024.128548

[8] A. Salimi, B. Kavosi, F. Fathi, R. Hallaj Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid-carbon nanotubes modified electrode: Application as cancer biomarker for prostatebiopsies, Biosensors and Bioelectronics 42 (2013) 439-446. https://doi.org/10.1016/j.bios.2012.10.053

[9] M. U. Khan, Z. N. Siddiqui, Halometallic ionic liquid incorporated graphene nanosheets (IMD-Si/FeCl4ˉ@ GNS): A highly efficient catalyst for the reduction of 4-nitrophenol and nonenzymatic glucose sensing, Current Research in Green and Sustainable Chemistry 4 (2021) 100101. https://doi.org/10.1016/j.crgsc.2021.100101

[10] P. Ling, X. Sun, X. Gao, L. Wang, P. Yang, F. Gao, Multifunctional porphyrin-ionic liquid aggregate for highly sensitive electrochemical detection of protein. Talanta 253 (2023) 124058. https://doi.org/10.1016/j.talanta.2022.124058.

[11] M. J. Saadh, M. Kaur, A. Yadav, S.M. Ibrahim, M. S. Mahdi, S. A. Hussein, M. K. Abosaoda, Neodymium doped nanosheet-assembled hierarchical Co3O4 nanoflowers modified electrode as an electrochemical sensor for the voltammetric determination of linezolid in the presence of theophylline, Microchemical Journal 212 (2025) 113311. https://doi.org/10.1016/j.microc.2025.113311

[12] Z. S. Pedro, J. M. Almeida, C. M. Brett, Influence of deep eutectic solvent and water mixtures on the electropolymerization of brilliant green on nanotube modified electrodes for the electrochemical determination of epinephrine, Electrochimica Acta 521 (2025) 145928. https://doi.org/10.1016/j.electacta.2025.145928

[13] S. Karakaya, C. Demir, B. T. Zaman, S. Bakırdere, Y. Dilgin, Conductive Poly (Bromophenol Red) Film Coated Graphene Oxide-ZnO Nanocomposite Modified Electrode for Enzymeless Voltammetric Determination of Ethyl-Paraoxon, Journal of Food Composition and Analysis 141 (2025) 107393. https://doi.org/10.1016/j.jfca.2025.107393

[14] I. Martı́nez-Mir, V. Palop, F. J. Morales-Olivas, L. Estañ, E. Rubio, The effects of epinine on arterial blood pressure and regional vascular resistances in anesthetized rats, General Pharmacology: The Vascular System 31 (1998) 75-79. https://doi.org/10.1016/S0306-3623(97)00447-3

[15] R. Gifford, W. C. Randolph, F. C. Heineman, J. A. Ziemniak, Analysis of epinine and its metabolites in man after oral administration of its pro-drug ibopamine using high-performance liquid chromatography with electrochemical detection, Journal of Chromatography B: Biomedical Sciences and Applications 381 (1986) 83-93. https://doi.org/10.1016/S0378-4347(00)83567-7

[16] H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W.,Maxakato, A. Abbaspourrad, A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode, New Journal of Chemistry 43 (2019) 2362-2367. https://doi.org/10.1039/C8NJ05581E

[17] T. Tavana, A. R. Rezvani, H. Karimi‐Maleh, Pt‐doped NiO nanoparticle‐ionic liquid modified electrochemical sensor: a powerful approach for determination of epinine in the presence of phenylephrine as two blood pressure raising drugs, Electroanalysis 32 (2020) 1828-1833. https://doi.org/10.1002/elan.202060006

[18] S. Shahraki, M. Masrournia, H. Karimi-Maleh, Fabrication of electrochemical sensor for epinine determination amplified with MgO/CNTs nanocomposite and ionic liquid, Current Analytical Chemistry 18 (2022) 125-132. https://doi.org/10.2174/1573411017666210303091301

[19] M. Achache, N.B. Seddik, D. Bouchta, K. Draoui, M. Choukairi, NiO nanoparticles modified carbon paste electrode for the voltammetric simultaneous detection of catechol and hydroquinone as environmental pollutants, Microchemical Journal 208 (2025) 112578. https://doi.org/10.1016/j.microc.2024.112578

[20] W. Bouali, A.A. Genc, N. Erk, H. E. H. Ahmed, M. Soylak, Advanced CuMnCr-LDH modified glassy carbon electrode for simultaneous electrochemical quantification of cabotegravir and paracetamol in biological and pharmaceutical samples, Microchemical Journal (2025) 113267. https://doi.org/10.1016/j.microc.2025.113267

[21] V. Hrdlička, O. Matvieiev, T. Navrátil, R. Šelešovská, Recent advances in modified boron-doped diamond electrodes: A review, Electrochimica Acta 456 (2023) 142435. https://doi.org/10.1016/j.electacta.2023.142435

[22] M. A. Winkleby, H. C. Kraemer, D. K. Ahn, A. N. Varady, Ethnic and socioeconomic differences in cardiovascular disease risk factors: findings for women from the Third National Health and Nutrition Examination Survey, 1988-1994, Jama 280 (1998) 356-362. https://doi:10.1001/jama.280.4.356

[23] C. Seiler, The human coronary collateral circulation, European journal of clinical investigation 40 (2010) 465-476. https://doi.org/10.1111/j.1365-2362.2010.02282.x

[24] L. V. Greco, A. Charest, Y. Li, L. Udo-Bellner, K. Ojamaa, A. M. Gerdes, Y. Zhang, Failing hearts are more vulnerable to dobutamine and caffeine-induced ventricular arrhythmias: ameliorated with dantrolene treatment, Heart Rhythm O2 6 (2024)224-232. https://doi.org/10.1016/j.hroo.2024.11.005

[25] H. Ibrahim, Y. Temerk, Synergistic electrocatalytic activity of In2O3@ FMWCNTs nanocomposite for electrochemical quantification of dobutamine in clinical patient blood and in injection dosage form, Talanta 208 (2020) 120362. https://doi.org/10.1016/j.talanta.2019.120362

[26] T. Nakamura, M. Hirayama, H. Ito, M. Takamori, K. Hamada, S. Takeuchi, G. Sobue, Dobutamine stress test unmasks cardiac sympathetic denervation in Parkinson's disease, Journal of the Neurological Sciences 263 (2007) 133-138. https://doi.org/10.1016/j.jns.2007.07.005

[27] E. Asadian, S. Shahrokhian, E. Jokar, In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine, Sensors and Actuators B 196 (2014) 582-588. https://doi.org/10.1016/j.snb.2014.02.049

[28] N. F. Atta, A. Galal, Y. M. Ahmed, H. Ekram, Design strategy and preparation of a conductive layered electrochemical sensor for simultaneous determination of ascorbic acid, dobutamine, acetaminophen and amlodipine, Sensors and Actuators B 297 (2019) 126648. https://doi.org/10.1016/j.snb.2019.126648

[29] V. Visocky, C. J. Turner, M. H. Lowrie, A. Alibro, F. Messanvi, Y. Chudasama, Noradrenergic modulation of stress induced catecholamine release: Opposing influence of FG7142 and yohimbine, Progress in Neuro-Psychopharmacology and Biological Psychiatry 138 (2025) 111314. https://doi.org/10.1016/j.pnpbp.2025.111314

[30] A. K. Brooke, S. Ojha, D. P. Murrow, A. E. Ross, Purinergic Receptor P2Y1 Modulates Catecholamine Signaling in Murine Mesenteric Lymph Nodes, ACS Chemical Neuroscience 16 (2025) 772-780. https://doi.org/10.1021/acschemneuro.4c00435

[31] Y. Li, J. Jian, L. Xiao, H. Wang, L. Yu, G. Cheng, M. Sun, Synthesis of NiMoO4 nanosheets on graphene sheets as advanced supercapacitor electrode materials, Materials Letters 184 (2016) 21-24. https://doi.org/10.1016/j.matlet.2016.08.012

Downloads

Published

01-05-2025

Issue

Section

Electroanalytical chemistry

How to Cite

NiMoO4 nanosheets modified carbon paste electrode for simultaneous determination of epinine and dobutamine: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(4), 2718. https://doi.org/10.5599/jese.2718

Similar Articles

1-10 of 362

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)