Gama-Fe2O3 silica-coated 2-(2-benzothiazolyl azo)-4-methoxyaniline for supercapacitive performance
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1657Keywords:
Hybrid nanocomposite, maghemite nanoparticles, azo dye ligand, supercapacitor electrode, coatings
Abstract
Magnetic g-Fe2O3@SiO2 core-shell nanocomposite was prepared using Stöber method and functionalized firstly by isopropenyloxytrimethylsilane as a coupling agent to enter active acetylacetone on the surface of nanoparticles, and after that by the synthesized azo dye ligand, 2-(2-benzothiazolyl azo)-4-methoxyaniline. In such a way, g-Fe2O3@SiO2-azo dye hybrid nanocomposite was formed. The structure of the synthesized azo dye was evidenced by physical and chemical analysis using melting point, Fourier-transform infrared spectroscopy (FT-IR), CHNS elemental analysis, proton nuclear magnetic resonance (HNMR) and gas chromatography mass spectrometry (GC-MS). The magnetic properties, structure, element composition and morphology characterization of prepared materials (g-Fe2O3,
g-Fe2O3@SiO2, and g-Fe2O3@SiO2-azo dye) were investigated by vibrating sample magnetometer (VSM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM) and field electron scanning electron microscopy-energy dispersive X-ray-mapping techniques. The electrochemical performance of synthesized g-Fe2O3, g-Fe2O3@SiO2, and g-Fe2O3@SiO2-2-(2-benzothiazolyl azo)-4-methoxyaniline) electrodes were carried out using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). It was shown that the finally prepared g-Fe2O3@SiO2-2-(2-benzothiazolyl azo)-4-methoxyaniline) hybrid nanocomposite electrode possesses good storage charge capability of 580 F g-1 at 1 A g-1.
Downloads
References
A. Kathalingam, S. Ramesh, A. Sivasamy, H. Kim, H. Kim, Supercapacitor performance of MnO2/NiCo2O4@N-MWCNT hybrid nanocomposite electrodes, Journal of Sol-Gel Science and Technology 91 (2019) 154-164. https://doi.org/10.1007/s10971-019-05032-0
B.R. Wiston, M. Preethi, M. Ashok, Supercapacitor Performance of β-Cobalt Hydroxide Prepared via a One-Pot Hydrothermal Method, Journal of Electronic Materials 52 (2023) 1644-1651. https://doi.org/10.1007/s11664-022-09988-8
Y. Lin, S. Zhang, L. Guan, J. Tao, Prospect of Ni-related metal oxides for high-performance supercapacitor electrodes, Journal of Materials Science 56 (2021) 1897-1918. https://doi.org/10.1007/s10853-020-05408-6
R. Garg, A. Agarwal, M. Agarwal, Performance of Copper Sulfide Hollow Rods in a Supercapacitor Based on Flexible Substrates, Journal of Electronic Materials 50 (2021) 6974-6980. https://doi.org/10.1007/s11664-021-09162-6
Z. H Mahmoud, R. A. AL-Bayati, A. A Khadom, Electrochemical Photocatalytic Degradation of Rhodamine B Dye by Sm3+ doped Titanium Dioxide (Sm-TiO2) in Natural Sunlight Exposure, International Journal of Electrochemical Science 16 (2021) 211241. https://doi.org/10.20964/2021.12.43
S. Singhal, A. Shukla, Improved electrochemical performance of supercapacitors by utilizing ternary Pd-AC-doped NiO nanostructure as an electrode material, Journal of Solid State Electrochemistry 24 (2020) 1271-1282. https://doi.org/10.1007/s10008-020-04615-0
K. Dong, Z. Yang, D. Shi, M. Chen, W. Dong, Nitrogen-doped carbon boosting Fe2O3 anode performance for supercapacitors, Journal of Materials Science: Materials in Electronics 33 (2022) 13547-13557. https://doi.org/10.1007/s10854-022-08289-4
C. Wu, Z. Zhang, Z. Chen, Z. Jiang, H. Li, H. Cao, Y. Liu, Y. Zhu, Z. Fung, X. Yu, Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors, Nano Research 14 (2021) 953-960. https://doi.org/10.1007/s12274-020-3131-z
P. de la Presa, Y. Luengo, M. Multigner, R. Costo, M. Morales, G. Rivero, A. Hernando, Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles, Journal of Physical Chemistry C 116 (2012) 25602-25610. https://doi.org/10.1021/jp310771p
O. Lemine, K. Omri, M. Iglesias, V. Velasco, P. Crespo, P. de la Presa, L. el Mir, H. Bouzid, A. Yousif, A. Al-Hajry, γ-Fe2O3 by sol-gel with large Nps size for magnetic hyperthermia application, Journal of Alloys and Compounds 607 (2014) 125-131. https://doi.org/10.1016/j.jallcom.2014.04.002
W. A. Ibrahim, Z. H. Mahmoud, Synthesis and characterization of new Fe-complex and its nanoparticle oxide using the novel photolysis method, International Journal of Pharma-ceutical and Phytopharmacological Research 8 (2018) 57-61. https://eijppr.com/iAdYMeR
N. S. Al-Obaidi, Z. H. Mahmoud, A. A. Frayyih, A.S. Ali, F. K Ali, Evaluating the electric properties of poly aniline with doping ZnO and α-Fe2O3 nanoparticles, Pharmacophore 9 (2018) 61-67. https://pharmacophorejournal.com/storage/models/article/STduXQmygcDo2fmBXOqV3fSfpGqvV6VKy883UkqgJ4CnxiEsnw4XusWVyIEw/evaluating-the-electric-properties-of-poly-aniline-with-doping-zno-and-fe2o3-nanoparticles.pdf
H. Shao, Y. Zhou, J. Qi, P. Hu, J. He, Characterization of Fe3O4/γ-Fe2O3@SiO2 Core-Shell Structure Composite Magnetic Fluid by Microemulsion Method, Journal of Superconductivity and Novel Magnetism 32 (2019) 247-252. https://doi.org/10.1007/s10948-018-4910-6
H. Zhang, Y. Ye, Z. Li, Y. Chen, P. Deng, Y. Li, Synthesis of Fe2O3-Ni(OH)2/graphene nano-composite by one-step hydrothermal method for high-performance supercapacitor, Journal of Materials Science 51 (2016) 2877-2885. https://doi.org/10.1007/s10853-015-9596-6
W. Gao, Y. Li, J. Zhao, Z. Zhang, W. Tang, J. Wang, Z. Wu, Z. Li, Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor, Chemical Rese-arch in Chinese Universities 38 (2022) 1097-1110. https://doi.org/10.1007/s40242-022-1442-1
Z. H. Mahmoud, M. S. Falih, O. E. Khalaf, M. A. Farhan, F. K. Ali, Photosynthesis of AgBr Doping TiO2 Nanoparticles and degradation of reactive red 120 dye, Journal of Advanced Pharmacy Education & Research 8(4) (2018) 51-55. https://japer.in/article/photosynthesis-of-agbr-doping-tio2-nanoparticles-and-degradation-of-reactive-red-120-dye
M. A. Farhan, Z. H. Mahmoud, M. S. Falih, Synthesis and characterization of TiO2/Au nanocomposite using UV-Irradiation method and its photocatalytic activity to degradation of methylene blue, Asian Journal of Chemistry 30(5) (2018) 1142-1146. https://doi.org/10.14233/ajchem.2018.21256
Z. H. Mahmoud, R. A. AL-Bayati, A. A Khadom, The efficacy of samarium loaded titanium dioxide (Sm:TiO2) for enhanced photocatalytic removal of rhodamine B dye in natural sunlight exposure, Journal of Molecular Structure 1253 (2022) 132267. https://doi.org/10.1016/j.molstruc.2021.132267
R. Eisavi, K. Naseri, Preparation, characterization and application of MgFe2O4/Cu nanocomposite as a new magnetic catalyst for one-pot regioselective synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles, RSC Advances 11(22) (2021) 13061-13076. https://doi.org/10.1039/D1RA01588E
M. Mahmoudzadeh, E. Mehdipour, R. Eisavi, MgFe2O4@SiO2-PrNH2/Pd/bimenthonoxime core-shell magnetic nanoparticles as a recyclable green catalyst for heterogeneous Suzuki cross-coupling in aqueous ethanol, Journal of Coordination Chemistry 72(5-7) (2019) 841-859. https://doi.org/10.1080/00958972.2019.1590562
M. Ibrahim, H.N. Abdelhamid, A.M. Abuelftooh, S.G. Mohamed, Z. Wen, X. Sun, Covalent organic frameworks (COFs)-derived nitrogen-doped carbon/reduced graphene oxide nanocomposite as electrodes materials for supercapacitors, Journal of Energy Storage 55 (2022) 105375. https://doi.org/10.1016/j.est.2022.105375
A. A. Qaiser, M. M. Hyland, D. A. Patterson, Surface and charge transport characterization of polyaniline−cellulose acetate composite membranes, The Journal of Physical Chemistry B 115(7) (2011) 1652-1661. https://doi.org/10.1021/jp109455m
M. Ibrahim, M. G. Fayed, S. G. Mohamed, Z. Wen, X. Sun, H.N. Abdelhamid, High-Perfor-mance Lithium-Ion Battery and Supercapacitors Using Covalent Organic Frameworks (COFs)/Graphitic Carbon Nitride (g-C3N4)-Derived Hierarchical N-Doped Carbon, ACS Applied Energy Materials 5(10) (2022) 12828-12836. https://doi.org/10.1021/acsaem.2c02415
B.-X. Zou, Y. Liang, X.-X. Liu, D. Diamond, K.-T. Lau, Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite, Journal of Power Sources 196(10) (2011) 4842-4848. https://doi.org/10.1016/j.jpowsour.2011.01.073
F. Davar, M. Salavati-Niasari, Z. Fereshteh, Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor, Journal of Alloys and Compounds 496(1-2) (2010) 638-643. https://doi.org/10.1016/j.jallcom.2010.02.152
S. Yao, S. Xue, S. Peng, M. Jing, X. Qian, X. Shen, T. Li, Y. Wang, Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and its application in lithium-sulfur batteries, Journal of Materials Science: Materials in Electronics 29 (2018) 17921-17930. https://doi.org/10.1007/s10854-018-9906-2
Y. A. Kumar, B. A. Al-Asbahi, M. R. Pallavolu, S. S. Rao, R. R. Nallapureddy, S. Ramakrishna, Multiple structural defects in poor crystalline nickel-doped tungsten disulfide nanorods remarkably enhance supercapacitive performance, International Journal of Energy Research 46(10) (2022) 14227-14239. https://doi.org/10.1002/er.8137
Y. A. Kumar, H. T. Das, P. R. Guddeti, R. R. Nallapureddy, M. R. Pallavolu, S. Alzahmi, I. M. Obaidat, Self-Supported Co3O4@Mo-Co3O4 Needle-like Nanosheet Heterostructured Architectures of Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors, Nanomaterials 12(14) (2022) 2330. https://doi.org/10.3390/nano12142330
Y. A. Kumar, K. D. Kumar, H.-J. Kim, Reagents assisted ZnCo2O4 nanomaterial for super-capa¬citor application, Electrochimica Acta, 330 (2020) 135261. https://doi.org/10.1016/j.electacta.2019.135261
Y. A. Kumar, S. Sambasivam, S. A. Hira, K. Zeb, W. Uddin, T. N. V. Krishna, K. D. Kumar, I. M. Obaidat, H.-J. Kim, Boosting the energy density of highly efficient flexible hybrid supercar-pacitors via selective integration of hierarchical nanostructured energy materials, Electro-chimica Acta 364 (2020) 137318. https://doi.org/10.1016/j.electacta.2020.137318
Z. H Mahmoud, R. A. AL-Bayati, A. A Khadom, Synthesis and supercapacitor performance of polyaniline-titanium dioxide-samarium oxide (PANI/TiO2-Sm2O3) nanocomposite, Chemical Papers 76 (2022) 1401-1412. https://doi.org/10.1007/s11696-021-01948-6
T. T. Anh, V. M. Thuan, D. H. Thang, B. T. Hang, Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes, Journal of Electronic Materials, 46 (2017) 3458-3462. https://doi.org/10.1007/s11664-016-5221-y
S. S. Patil, K. V. Harpale, S. P. Koiry, K. R. Patil, D. K. Aswal, M. A. More, Multifunctional polyaniline-tin oxide (PANI-SnO2) nanocomposite: Synthesis, electrochemical, and field emission investigations, Journal of Applied Polymer Science 132(5) (2015) 41401. https://doi.org/10.1002/app.41401
F. Xie, M. Zhou, G. Wang, Q. Wang, M. Yan, H. Bi, Morphology dependent electrochemical performance of nitrogendoped carbon dots@polyaniline hybrids for supercapacitors, International Journal of Hydrogen Energy 43(13) (2019) 7529-7540. https://doi.org/10.1002/er.4678
L. Yu, G. Z. Chen, Supercapatteries as high-performance electrochemical energy storage devices, Electrochemical Energy Reviews 3 (2020) 271-285. https://doi.org/10.1007/s41918-020-00063-6
J. Ben, Z. Song, X. Liu, W. Lu, X. Li, Fabrication and Electrochemical Performance of PVA/CNT/PANI flexible films as electrodes for supercapacitors, Nanoscale Research Letters 15 (2020) 151. https://doi.org/10.1186/s11671-020-03379-w
L. Zhang, H. Xia, S. Liu, Y. Zhou, Y. Zhao, W. Xie, Nickel-cobalt hydroxides with tunable thin-layer nanosheets for high-performance supercapacitor electrode, Nanoscale Research Letters 16 (2021) 83. https://doi.org/10.1186/s11671-021-03543-w
R. Eisavi, F. Ahmadi, Fe3O4@SiO2-PMA-Cu magnetic nanoparticles as a novel catalyst for green synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles, Scientific Reports 12 (2022) 11939. https://doi.org/10.1038/s41598-022-15980-3
J. Wan, A. Pang, D. He, A high-performance supercapacitor electrode based on three-dimen¬sional poly-rowed copper hydroxide nanorods on copper foam, Journal of Materials Science: Materials in Electronics 29 (2018) 2660-2667. https://doi.org/10.1007/s10854-017-8192-8
E. Payami, M. A. Keynezhad, K. D. Safa, R. Teimuri-Mofrad, Development of high-performance supercapacitor based on Fe3O4@SiO2@PolyFc nanoparticles via surface-initiated radical polymerization, Electrochimica Acta 439 (2023) 141663. https://doi.org/10.1016/j.electacta.2022.141663
Y. Dong, L. Xing, K. Chen, K. Wu, Porous Fe2O3@C nanowire arrays as flexible supercapacitors electrode materials with excellent electrochemical performances, Nanomaterials 8(7) (2018) 487. https://doi.org/10.3390/nano8070487
M. A. Mustafa, Q. A. Qasim, A. B. Mahdi, S. E. Izzat, Y. S. Alnassar, E. S. Abood, Z. J. alhakim, Z. H. Mahmoud, A. M. Rheima, H. N. K. Al-Salman, Supercapacitor performance of Fe3O4 and Fe3O4@ SiO2-bis (aminopyridine)-Cu hybrid nanocomposite, International Journal of Electrochemical Science 17 (2022) 221057. http://doi.org/10.20964/2022.10.49
N. Iqbal, X. Wang, A. A. Babar, Flexible Fe3O4@Carbon Nanofibers Hierarchically Assembled with MnO2 Particles for High-Performance Supercapacitor Electrodes, Scientific Reports 7 (2017) 15153. https://doi.org/10.1038/s41598-017-15535-x
W. Shi, J. Zhu, D. H. Sim, Y. Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H. H. Hng, Q. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, Journal of Materials Chemistry 21 (2011) 3422-3427. https://doi.org/10.1039/c0jm03175e
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.