Screen-printed electrode for electrochemical detection of sunitinib malate for therapeutic drug monitoring
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2478Keywords:
Anticancer drug, electrooxidation, differential pulse voltammetry, real samples, electrochemical sensor
Abstract
Sunitinib is a targeted therapy for colorectal cancer, which needs a precise dosage due to potential severe side effects from overdose. Therapeutic drug monitoring is crucial for maintaining optimal drug levels in body fluids. Traditional anticancer drug dose evaluation methods such as high-pressure liquid chromatography, liquid chromatography with mass spectrophotometry, and immunoassays are cumbersome. This study explores the utilization of electrochemical sensors on indigenously developed screen-printed electrodes for sunitinib malate monitoring. Differential pulse voltammetry, cyclic voltammetry and chrono-amperometric studies were conducted in a conventional three-electrode system. An anodic peak current, indicative of sunitinib malate electrooxidation, was observed around +0.45 V vs. Ag/AgCl reference electrode in 0.1 M PB of pH 7.4. Sensitivity, the limit of detection and method detection limit were determined as 0.386 µA µM-1 cm-2, 0.009 and 0.0108 µM, respectively. The response exhibited linearity (R2 = 0.990) with sunitinib concentration ranging from 0.08 to 88 μM with good reproducibility. DPV studies on real samples yielded acceptable recovery values. Electrochemical sensors based on the screen-printed electrode present a promising approach for sunitinib monitoring, offering sensitivity, low limit of detection, and a wide linear range. Since the expected plasma concentration of sunitinib is much higher than the sensor detection range, it can be used for real sample analysis. Here developed methods could simplify and improve therapeutic drug monitoring in colorectal cancer treatment.
Downloads
References
K. Patel, S. Siraj, C. Smith, M. Nair, J. K. Vishwanatha, R. Basha, Pancreatic cancer: an emphasis on current perspectives in immunotherapy, Critical Reviews in Oncogenesis 24 (2019) 105-118. https://doi.org/10.1615/critrevoncog.2019031417
T. Sinha, Tumors: benign and malignant, Cancer Therapy & Oncology International Journal 10 (2018) 52-54. https://doi.org/10.19080/CTOIJ.2018.10.555790
A. Yarahmadi, T. Madrakian, A. Afkhami, N. R. Jalal, Electrochemical determination of sunitinib in biological samples using polyacrylonitrile nanofibers/nickel-zinc-ferrite nanocomposite/carbon paste electrode, Journal of The Electrochemical Society 166 (2019) B1268. https://doi.org/10.1149/2.0371914jes
Y.-L. Lai, C.-C. Lin, S.-R. Hsu, S.-K. Yen, Electrochemical deposition of cisplatin on pure magnesium, Journal of The Electrochemical Society 165 (2018) D196. https://doi.org/10.1149/2.0501805JES/XML
L. Cabel, B. Blanchet, A. Thomas-Schoemann, O. Huillard, A. Bellesoeur, A. Cessot, J. Giroux, P. Boudou-Rouquette, R. Coriat, M. Vidal, N. E. B. Saidu, L. Golmard, J. Alexandre, F. Goldwasser, Drug monitoring of sunitinib in patients with advanced solid tumors: a monocentric observational French study, Fundamental and Clinical Pharmacology 32 (2018) 98-107. https://doi.org/10.1111/fcp.12327
N. P. Van Erp, S. D. Baker, A. S. Zandvliet, B. A. Ploeger, M. Den Hollander, Z. Chen, J. Den Hartigh, J. M. C. König-Quartel, H.-J. Guchelaar, H. Gelderblom, Marginal increase of sunitinib exposure by grapefruit juice, Cancer Chemotherapy and Pharmacology 67 (2011) 695-703. https://doi.org/10.1007/s00280-010-1367-0
G. D. Demetri, A. T. van Oosterom, C. R. Garrett, M. E. Blackstein, M. H. Shah, J. Verweij, G. McArthur, I. R. Judson, M. C. Heinrich, J. A. Morgan, J. Desai, C. D. Fletcher, S. George, C. L. Bello, X. Huang, C. M. Baum, P. G. Casali, Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial, The Lancet 368 (2006) 1329-1338. https://doi.org/10.1016/S0140-6736(06)69446-4
S. M. Tange, V. L. Grey, P. E. Senécal, Therapeutic drug monitoring in pediatrics: a need for improvement, The Journal of Clinical Pharmacology 34 (1994) 200-214. https://doi.org/10.1002/J.1552-4604.1994.TB03987.X
A. M. AboulMagd, N. S. Abdelwahab, Analysis of sunitinib malate, a multi-targeted tyrosine kinase inhibitor: A critical review, Microchemical Journal 163 (2021) 105926. https://doi.org/10.1016/J.MICROC.2021.105926
E. Souri, E. Amoon, N. S. Ravari, F. Keyghobadi, M. B. Tehrani, Spectrophotometric methods for determination of sunitinib in pharmaceutical dosage forms based on ion-pair complex formation, Iranian Journal of Pharmaceutical Research 19 (2020) 103. https://doi.org/10.1016/10.22037/ijpr
R. Demlová, M. Turjap, O. Peš, K. Kostolanská, J. Juřica, Therapeutic drug monitoring of sunitinib in gastrointestinal stromal tumors and metastatic renal cell carcinoma in adults—a review, Therapeutic Drug Monitoring 42 (2020) 20-32. https://doi.org/10.1097/FTD.0000000000000663
R. M. Silva, A. D. da Silva, J. R. Camargo, B. S. de Castro, L. M. Meireles, P. S. Silva, B. C. Janegitz, T.A. Silva, Carbon nanomaterials-based screen-printed electrodes for sensing applications, Biosensors (Basel) 13 (2023) 453. https://doi.org/10.3390/bios13040453
H. M. Kashani, T. Madrakian, A. Afkhami, Highly fluorescent nitrogen-doped graphene quantum dots as a green, economical and facile sensor for the determination of sunitinib in real samples, New Journal of Chemistry 41 (2017) 6875-6882. https://doi.org/10.1039/C7NJ00262A
B. Vercelli, S. Crotti, M. Agostini, Voltammetric responses at modified electrodes and aggregation effects of two anticancer molecules: irinotecan and sunitinib, New Journal of Chemistry 44 (2020) 18233-18241. https://doi.org/10.1039/D0NJ03896B
J. Ye, M. Bi, H. Yao, D. Yang, D. Chen, Chromatographic and mass spectrometric analytical strategies for profiling tyrosine kinase inhibitors in biological samples, Microchemical Journal 201 (2024) 110694. http://dx.doi.org/10.1016/j.microc.2024.110694
G. Zotti, A. Berlin, B. Vercelli, Electrochemistry of conjugated planar anticancer molecules: Irinotecan and Sunitinib, Electrochimica Acta 231 (2017) 336-343. http://dx.doi.org/10.1016/j.electacta.2017.02.043
P. Minkin, M. Zhao, Z. Chen, J. Ouwerkerk, H. Gelderblom, S. D. Baker, Quantification of sunitinib in human plasma by high-performance liquid chromatography-tandem mass spectrometry, Journal of Chromatography B 874 (2008) 84-88. https://doi.org/10.1016/j.jchromb.2008.09.007
L. Litti, V. Amendola, G. Toffoli, M. Meneghetti, Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering, Analytical and Bioanalytical Chemistry 408 (2016) 2123-2131. https://doi.org/10.1007/s00216-016-9315-4
M. Rodamer, P. W. Elsinghorst, M. Kinzig, M. Gütschow, F. Sörgel, Development and validation of a liquid chromatography/tandem mass spectrometry procedure for the quantification of sunitinib (SU11248) and its active metabolite, N-desethyl sunitinib (SU12662), in human plasma: application to an explorative study, Journal of Chromatography B 879 (2011) 695-706. https://doi.org/10.1016/j.jchromb.2011.02.006
C. Zhang, L. Li, Study on electrochemical sensor for sunitinib cancer medicine based on metal-organic frameworks and carbon nanotubes nanocomposite, Alexandria Engineering Journal 97 (2024) 8-13. https://doi.org/10.1016/j.aej.2024.03.104
F. Y. Dewi, S. T. Cahyono, F. Hilmi, A. R. Sanjaya, D. W. Hastuti, N. I. Pratiwi, H. K. Aliwarga, P. Prajitno, T.A. Ivandini, D. Handoko, Electrochemical performance of gold nanoparticles decorated on Multi-walled Carbon Nanotube (MWCNT) Screen-printed Electrode (SPE), in: ITM Web of Conferences, 2024, p. 1019. https://doi.org/10.1051/itmconf/20246101019
A. L. Devi, P. E. Resmi, A. Pradeep, P. V Suneesh, B. G. Nair, T. G. S. Babu, A paper-based point-of-care testing device for the colourimetric estimation of bilirubin in blood sample, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 287 (2023) 122045. https://doi.org/10.1016/J.MATLET.2021.130574.
M. H. Ali, M. A. K. Azad, K. A. Khan, M. O. Rahman, U. Chakma, A. Kumer, Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques, ACS Omega 8 (2023) 28133-28142. https://doi.org/10.1021/acsomega.3c01261
Y. Wang, J. E. Panzik, B. Kiefer, K. K. M. Lee, Crystal structure of graphite under room-temperature compression and decompression, Scientific Reports 2 (2012) 520. https://doi.org/10.1038/srep00520
M. A. Majeed Khan, S. Kumar, M. Ahamed, S. A. Alrokayan, M. S. AlSalhi, Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films, Nanoscale Research Letters 6 (2011) 434. https://doi.org/10.1186/1556-276X-6-434
M. BinSabt, M. Shaban, A. Gamal, Nanocomposite electrode of titanium dioxide nanoribbons and multiwalled carbon nanotubes for energy storage, Materials 16 (2023) 595. https://doi.org/10.3390/ma16020595
F. S. da Cruz, F. de Souza Paula, D. L. Franco, W. T. P. dos Santos, L. F. Ferreira, Electrochemical detection of uric acid using graphite screen-printed electrodes modified with Prussian blue/poly (4-aminosalicylic acid)/Uricase, Journal of Electroanalytical Chemistry. 806 (2017) 172-179. http://dx.doi.org/10.1016/j.jelechem.2017.10.070
K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics, Journal of Radiation Research and Applied Sciences 9 (2016) 217-227. https://doi.org/10.1016/j.jrras.2015.10.002
H. Pal, V. Sharma, R. Kumar, N. Thakur, Facile synthesis and electrical conductivity of carbon nanotube reinforced nanosilver composite, Zeitschrift für Naturforschung A 67a (2012) 679-684. https://doi.org/10.5560/zna.2012-0072
M. M. Ngoma, M. Mathaba, K. Moothi, Effect of carbon nanotubes loading and pressure on the performance of a polyethersulfone (PES)/carbon nanotubes (CNT) membrane, Scientific Reports 11 (2021) 23805. https://doi.org/10.1038/s41598-021-03042-z
H. Rahmanian, Z. Es’haghi, M. Dadmehr, A robust electrochemical sensing platform for the detection of erlotinib based on nitrogen-doped graphene quantum dots/copper nanoparticles-polyaniline-graphene oxide nanohybrid, Nanotechnology 34 (2022) 15502. https://doi.org/10.1088/1361-6528/ac8996
E. C. Okpara, S. C. Nde, O. E. Fayemi, E. E. Ebenso, Electrochemical characterization and detection of lead in water using SPCE modified with BiONPs/PANI, Nanomaterials 11 (2021) 1294. https://doi.org/10.3390/nano11051294
N. Negash, H. Alemu, M. Tessema, Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly (3, 4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode, International Scholarly Research Notices 2015 (2015) 459246. http://dx.doi.org/10.1155/2015/459246
J. E. B. Randles, Kinetics of rapid electrode reactions, Discussions of the Faraday Society 1 (1947) 11-19. https://doi.org/10.1039/DF9470100011
J. Raveendran, J. Stanley, T. G. S. Babu, Voltammetric determination of bilirubin on disposable screen printed carbon electrode, Journal of Electroanalytical Chemistry. 818 (2018) 124-130. https://doi.org/10.1016/J.JELECHEM.2018.04.020
A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley, New-York, 1989. ISBN 0-471-05542-5
A. Bruchbacher, S. Nachbargauer, H. Fajkovic, M. Schmidinger, Sunitinib Dose Escalation in Metastatic Renal Cell Carcinoma, Kidney Cancer 3 (2019) 103-110. https://doi.org/10.3233/KCA-190055
N. A. G. Lankheet, I. M. E. Desar, S. F. Mulder, D. M. Burger, D. M. Kweekel, C. M. L. van Herpen, W.T.A. van der Graaf, N.P. van Erp, Optimizing the dose in cancer patients treated with imatinib, sunitinib and pazopanib, British Journal of Clinical Pharmacology 83 (2017) 2195-2204. https://doi.org/10.1111/bcp.13327
S. Huang, X. Liu, X. Guo, H. Wu, H. Lu, Z. Pan, S. Cai, X. Wu, X. Zhang, Sunitinib versus imatinib dose escalation after failure of imatinib standard dose in patients with advanced Gastrointestinal stromal tumors-a real-world multi-center study, Translational Oncology 30 (2023) 101641. https://doi.org/10.1016/j.tranon.2023.101641
C. Serrano, A. Mariño-Enríquez, D. L. Tao, J. Ketzer, G. Eilers, M. Zhu, C. Yu, A. M. Mannan, B. P. Rubin, G. D. Demetri, others, Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours, British Journal of Cancer 120 (2019) 612-620. https://doi.org/10.1038/s41416-019-0389-6
E. Wang, S. G. DuBois, C. Wetmore, A. C. Verschuur, R. Khosravan, Population pharmacokinetics of sunitinib and its active metabolite SU012662 in pediatric patients with gastrointestinal stromal tumors or other solid tumors, European Journal of Drug Metabolism and Pharmacokinetics 46 (2021) 343-352. https://doi.org/10.1007/s13318-021-00671-7
F. Budak, A. Cetinkaya, S. I. Kaya, E. B. Atici, S. A. Ozkan, Investigations on the electrochemical behavior of sunitinib and metabolites N-desethyl-sunitinib and sunitinib-N-oxide and its selective determination using molecularly imprinted polymer-based sensor, Electrochimica Acta 472 (2023) 143434. http://dx.doi.org/10.1016/j.electacta.2023.143434
B. Blanchet, C. Saboureau, A. S. Benichou, B. Billemont, F. Taieb, S. Ropert, A. Dauphin, F. Goldwasser, M. Tod, Development and validation of an HPLC-UV-visible method for sunitinib quantification in human plasma, Clinica Chimica Acta 404 (2009) 134-139. https://doi.org/10.1016/j.cca.2009.03.042
P. de Bruijn, S. Sleijfer, M.-H. Lam, R. H. J. Mathijssen, E. A. C. Wiemer, W. J. Loos, Bioanalytical method for the quantification of sunitinib and its n-desethyl metabolite SU12662 in human plasma by ultra performance liquid chromatography/tandem triple-quadrupole mass spectrometry, Journal of Pharmaceutical and Biomedical Analysis. 51 (2010) 934-941. https://doi.org/10.1016/j.jpba.2009.10.020
C. Zhang, L. Li, Study on electrochemical sensor for sunitinib cancer medicine based on metal-organic frameworks and carbon nanotubes nanocomposite, Alexandria Engineering Journal 97 (2024) 8-13. https://doi.org/10.1016/j.aej.2024.03.104
G. Kholafazadehastamal, N. Erk, A. A. Genc, Z. Erbas, M. Soylak, Glassy carbon electrodes modified with graphitic carbon nitride nanosheets and CoNiO2 bimetallic oxide nanoparticles as electrochemical sensor for Sunitinib detection in human fluid matrices and pharmaceutical samples, Microchimica Acta 191 (2024) 527. https://doi.org/10.1007/s00604-024-06605-9
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.