Highly sensitive determination of methyldopa and hydrochlorothiazide using CoMoO4 nanosheets-modified screen-printed electrode
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2747Keywords:
Voltammetry, drug analysis, real sample analysis, blood pressure drugsAbstract
A novel screen-printed electrode (SPE) modified by CoMoO4 nanosheets (CoMoO4 NSs) was designed to analyse hydrochlorothiazide. Cyclic voltammetry, chronoamprometry and differential pulse voltammetry using the developed electrode were performed to evaluate its electrochemical behaviour. Further, the anodic peak currents for hydrochlorothiazide at CoMoO4 NSs modified SPE were almost 4 times higher than for the untreated SPE. Between the concentration range of 0.1 to 400.0 μM, the modified electrode's response was directly proportional to the concentration, and it could detect hydrochlorothiazide at a very low level of 0.05 μM (S/N = 3). Hydrochlorothiazide was also measured using the modified electrode when methyldopa was present. The sensor offers various advantages for the analysis of hydrochlorothiazide detection, including moderate cost, ease of preparation and considerable sensitivity.
Downloads
References
[1] M. Cirri, F. Maestrelli, N. Mennini, L. D. Cesareannelli, L. Micheli, C. Ghelardini, P. Mura, Development of a stable oral pediatric solution of hydrochlorothiazide by the combined use of cyclodextrins and hydrophilic polymers, International Journal of Pharmaceutics 587 (2020) 119692. https://doi.org/10.1016/j.ijpharm.2020.119692.
[2] C. Mendes, A. Buttchevitz, J. H. Kruger, J. Müller Kratz, C. M. Oliveira Simões, P. Oliveira Benedet, P. Renato Oliveira, M. A. Segatto Silva, Inclusion complexes of hydrochlorothiazide and β-cyclodextrin: Physicochemical characteristics, in vitro and in vivo studies, European Journal of Pharmaceutical Sciences 83 (2016) 71-78. https://doi.org/10.1016/j.ejps.2015.12.015.
[3] H. J. Helmlin, A. Mürner, S. Steiner, M. Kamber, C. Weber, H. Geyer, S. Guddat, W. Schänzr, M. Thevis, Detection of the diuretic hydrochlorothiazide in a doping control urine sample as the result of a non-steroidal anti-inflammatory drug (NSAID) tablet contamination, Forensic science international 267 (2016) 166-172. https://doi.org/10.1016/j.forsciint.2016.08.029.
[4] J. R. Patel, T. M. Pethani, A. N. Vachhani, N. R. Sheth, A. V. Dudhrejiya, Development and validation of bioanalytical method for simultaneous estimation of ramipril and hydrochlorothiazide in human plasma using liquid chromatography-tandem mass spectrometry, Journal of Chromatography B 970 (2014) 53-59. https://doi.org/10.1016/j.jchromb.2014.08.023.
[5] I. M. Samara, M. Ntorkou, C. I. Gioumouxouzis, C. Karavasili, P. D. Tzanavaras, C. K. Zacharis, Analytical QbD for the optimisation of a multimode HPLC method for the investigation of hydrochlorothiazide, diltiazem and propranolol release from 3D printed formulation, Journal of Pharmaceutical and Biomedical Analysis 248 (2024) 116324. https://doi.org/10.1016/j.jpba.2024.116324.
[6] T. T. Liu, L. L. Xiang, J. L. Wang, D. Y. Chen, Application of capillary electrophoresis-frontal analysis for comparative evaluation of the binding interaction of captopril with human serum albumin in the absence and presence of hydrochlorothiazide, Journal of pharmaceutical and biomedical analysis 115 (2015) 31-35. https://doi.org/10.1016/j.jpba.2015.06.022.
[7] M. F. Khanfar, E. S. M. Abu-Nameh, M. M. Saket, L. T. Al Khateeb, A. Al Ahmad, Z. Asaad, Z. Salem, N. Alnuman, Detection of hydrochlorothiazide, sulfamethoxazole, and trimethoprim at metal oxide modified glassy carbon electrodes, International Journal of Electrochemical Science 15 (2020) 1771-1787. https://doi.org/10.20964/2020.02.35.
[8] H. T. Purushothama, Y. Arthoba Nayaka, Pencil graphite electrode based electrochemical system for the investigation of antihypertensive drug hydrochlorothiazide: An electrochemical study, Chemical Physics Letters 734 (2019) 136718. https://doi.org/10.1016/j.cplett.2019.136718.
[9] F. Zouaoui, G. Menassol, C. Ducros, P. Mailley, Y. Thomas, Electrochemical sensors based on amorphous carbon electrode, Microchemical Journal 209 (2025) 112650. https://doi.org/10.1016/j.microc.2025.112650.
[10] D. Wang, B. Li, Z. Ma, C. Zhang, L. Liu, S. Niu, Z. Han, L. Ren, Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications, Biosensors and Bioelectronics 271 (2025) 117086. https://doi.org/10.1016/j.bios.2024.117086.
[11] X. Sun, T. Hu, Y. Bai, T. Cao, S. Wang, W. Hu, H. Yang, X. Luo, M. Cui, Renin imprinted poly (methyldopa) for biomarker detection and disease therapy, Biosensors and Bioelectronics 254 (2024) 116225. https://doi.org/10.1016/j.bios.2024.116225.
[12] V. K. Gupta, S. Khosravi, H. Karimi-Maleh, M. Alizadeh, S. Sharafi, A voltammetric sensor for Determination of Methyldopa in the Presence of Hydrochlorothiazide Using Fe:Co Nanoalloy modified carbon paste electrode, International Journal of Electrochemical Science 10 (2015) 3269-3281. https://doi.org/10.1016/S1452-3981(23)06538-0.
[13] M. Mekersi, M. Ferkhi, A. Khaled, N. Maouche, M. Foudia, E. K. Savan, Electrochemical bio-monitoring of the analgesic drug paracetamol, the antipsychotic sulpiride, and the antibiotic bromhexine hydrochloride using modified carbon paste electrode based on Ca0.7 La0.3 Fe0.3 Ni0.7O3 nano-sized particles and black carbon, Surfaces and Interfaces 53 (2024) 104941. https://doi.org/10.1016/j.surfin.2024.104941
[14] R. K. Hamdan, A. Al-Adili, T. A. Mohammed, Laboratory experiments and numerical model of scour at upstream of a slit weir, Journal of Applied Sciences and Nanotechnology 3 (2023) 47-61. https://doi.org/10.53293/jasn.2023.6199.1199
[15] M. A. Fayad, F. J. Martos, Effect of nano additives application and strategy of injection on particulate characteristics in engine operated with biodiesel blends, Journal of Applied Sciences and Nanotechnology 5 (2025) 14-24. https://doi.org/10.53293/jasn.2024.7490.1318.
[16] W. Ziedan, M. M. Ismail, W. A. Hussain, Physical and structural properties of porous kaolin/Co-ferrite for water treatment, Journal of Applied Sciences and Nanotechnology 4 (2024) 43-52. https://doi.org/10.53293/jasn.2024.7103.1245.
[17] K. V. Mokwebo, E. Murphy, S. K. Guin, A. Camisasca, S. Giordani, C. Breslin, E. I. Iwuoha, E. Dempsey, Copper-modified carbon nano-onions as electrode modifiers for the electroanalysis of the antiretroviral drug efavirenz, Electrochimica Acta 461 (2023) 142639. https://doi.org/10.1016/j.electacta.2023.142639.
[18] S. B. Ali, M. A. Fakhri, S. C. B. Gopinath, Effect of annealing process on the physical properties of ZnO nanorods and their performances as photodetectors, Journal of Optics 53 (2024) 2853–2862. https://doi.org/10.1007/s12596-024-01789-y.
[19] S. B. Ali, A. B Oshido, A.Houlton, B. R Horrocks, Models for sensing by nanowire networks: application to organic vapour detection by multiwall carbon nanotube-DNA films, Nanotechnology 33 (2022) 045502. https://doi.org/10.1088/1361-6528/ac2e20
[20] S. A. Macció , S. N. Robledo, J. González, S. Botasini, Gastón D. Pierini, M. López-Tenés, E. Méndez, Absolute calibration-free quantitation of electroactive species on screen-printed electrodes under limited diffusion conditions. A proof of concept, Sensors and Actuators B 42715 (2025) 137171. https://doi.org/10.1016/j.snb.2024.137171.
[21] D. Chang, Z. Wang, X. Xu, T. Shen, H. Yu, Y. Zhang, X. An, Y. Fan, X. Yan, H. Pan c, Z. Zhan, Rapid detection of des-gamma-carboxy prothrombin with disposable screen printed ITO electrode based on multiple signal amplification strategy of metal-organic skeleton material, Journal of Electroanalytical Chemistry 977 (2025) 118860. https://doi.org/10.1016/j.jelechem.2024.118860.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Shams B. Ali

This work is licensed under a Creative Commons Attribution 4.0 International License.