Electrochemical sensor for acetylcholine detection based on WO3 nanorods-modified glassy carbon electrode
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2462Keywords:
Cyclic voltammetry, differential pulse voltammetry, modified electrodes, real sample analysis, neurotransmitterAbstract
Acetylcholine (ACH) is one of the excitatory neurotransmitter in the human body. It is the most abundant neurotransmitter responsible for triggering the activation of postsynaptic neurons, leading to an excitatory response. ACH plays a crucial role in various physiological processes, including muscle contraction, autonomic nervous system regulation, and cognitive functions such as learning and memory. In this study, an electrochemical sensor was prepared based on WO3 nanorods modified glassy carbon electrode for the detection of ACH. The WO3 nanorods provided excellent properties for the electrochemical determination of ACH. The proposed sensor exhibited a wide linear detection range of (0.1 to 400.0 µM) and a low detection limit of 0.025 µM for ACH. These results demonstrate the sensor's high sensitivity in detecting this important neurotransmitter. In addition the developed sensor showed good ability for ACH determination in real samples. This study offers an innovative strategy for the electrochemical detection of ACH, showcasing the potential of nanomaterials in the development of advanced sensing technologies.
Downloads
References
N. Chauhan, S. Chawla, C. S. Pundir, U. Jain, an electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode, Biosensors and Bioelectronics 89 (2017) 377-383. https://doi.org/10.1016/j.bios.2016.06.047
A. Shadlaghani, M. Farzaneh, D. Kinser, R. C. Reid, Direct electrochemical detection of glutamate, acetylcholine, choline, and adenosine using non-enzymatic electrodes, Sensors 19(3) (2019) 447. https://doi.org/10.3390/s19030447
S. Pitiphattharabun, K. Auewattanapun, T. L. Htet, M. M. Thu, G. Panomsuwan, R. Techapiesancharoenkij, J. Ohta, O. Jongprateep, Reduced graphene oxide/zinc oxide composite as an electrochemical sensor for acetylcholine detection, Scientific Reports 14(1) (2024) 14224. https://doi.org/10.1038/s41598-024-64238-7
E. Lamy, L. Pilyser, C. Paquet, E. Bouaziz-Amar, S. Grassin-Delyle, High-sensitivity quantification of acetylcholine and choline in human cerebrospinal fluid with a validated LC-MS/MS method, Talanta 224 (2021) 121881. https://doi.org/10.1016/j.talanta.2020.121881
J. Guo, S. Wu, Y. Wang, M. Zhao, A label-free fluorescence biosensor based on a bifunctional MIL-101 (Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level, Sensors and Actuators B 312 (2020) 128021. https://doi.org/10.1016/j.snb.2020.128021
J. Říčný, S. Tuček, I. Vinš, Sensitive method for HPLC determination of acetylcholine, choline and their analogues using fluorometric detection, Journal of neuroscience methods 41(1) (1992) 11-17. https://doi.org/10.1016/0165-0270(92)90119-X
F. J. R. Beattie, A colorimetric method for the determination of choline and acetylcholine in small amounts, Biochemical Journal 30(9) (1936) 1554. https://doi.org/10.1042%2Fbj0301554
S. Pitiphattharabun, K. Auewattanapun, T. L. Htet, M. M. Thu, G. Panomsuwan, R. Techapiesancharoenkij, J. Ohta, O. Jongprateep, Reduced graphene oxide/zinc oxide composite as an electrochemical sensor for acetylcholine detection, Scientific Reports 14(1) (2024) 14224. https://doi.org/10.1038/s41598-024-64238-7
M. Y. Emran, M. A. Shenashen, A. El Sabagh, M. M. Selim, S. A. El-Safty, Enzymeless copper microspheres@ carbon sensor design for sensitive and selective acetylcholine screening in human serum, Colloids and Surfaces B 210 (2022) 112228. https://doi.org/10.1016/j.colsurfb.2021.112228
M. Y. Emran, M. A. Shenashen, A. Elmarakbi, M. M. Selim, S. A. El-Safty, Hierarchical engineering of Mn2O3/carbon nanostructured electrodes for sensitive screening of acetylcholine in biological samples, New Journal of Chemistry 46(32) (2022) 15557-15566. https://doi.org/10.1039/D2NJ02390C
S. Tajik, H. Beitollahi, S. Shahsavari, F. G. Nejad, Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode, Chemosphere 291 (2022) 132736. https://doi.org/10.1016/j.chemosphere.2021.132736
M. Manjunatha Charithra, J. G. Manjunatha, Electrochemical sensing of paracetamol using electropolymerised and sodium lauryl sulfate modified carbon nanotube paste electrode, ChemistrySelect 5(30) 2020) 9323-9329. https://doi.org/10.1002/slct.202002626
S. Borji, H. Beitollahi, F.G. Nejad, Evaluating the Electrochemical Detection of Methyldopa in the Presence of Hydrochlorothiazide using a modified Carbon Paste Electrode and Voltammetric Analysis, Topics in Catalysis 67(9) (2024) 773-784. https://doi.org/10.1007/s11244-023-01855-y
J. G. Manjunatha, Highly sensitive polymer based sensor for determination of the drug mitoxantrone, Journal of Surface Science and Technology 34 (2018) 74-80. https://doi.org/10.18311/jsst/2018/15838
J. G. Manjunatha, Fabrication of efficient and selective modified graphene paste sensor for the determination of catechol and hydroquinone, Surfaces 3(3) (2020) 473-83. https://doi.org/10.3390/surfaces3030034
S. Tajik, P. Shams, H. Beitollahi, F. Garkani Nejad, Electrochemical Nanosensor for the Simultaneous Determination of Anticancer Drugs Epirubicin and Topotecan Using UiO-66-NH2/GO Nanocomposite Modified Electrode, Biosensors 14(5) (2024) 229. https://doi.org/10.3390/bios14050229
G .V. Prasad, V. Vinothkumar, S. J. Jang, T. H. Kim, Multi-walled carbon nanotube/graphene oxide/poly (threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples, Microchemical Journal 184 (2023) 108205. https://doi.org/10.1016/j.microc.2022.108205
G. Tigari, J. G. Manjunatha. Poly (glutamine) film-coated carbon nanotube paste electrode for the determination of curcumin with vanillin: an electroanalytical approach, Monatshefte für Chemie-Chemical Monthly 151 (2020) 1681-1688. https://doi.org/10.1007/s00706-020-02700-8
J. G. Manjunatha, A promising enhanced polymer modified voltammetric sensor for the quan¬tification of catechol and phloroglucinol, Analytical and Bioanalytical Electrochemistry 12(7) (2020) 893-903. www.abechem.com/article_43499_14e9b1642faa3cfb0d7867d6452c363b.pdf
M. M. Charithra, J. G. Manjunatha, Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode, Materials Chemistry and Physics 262 (2021) 124293. https://doi.org/10.1016/j.matchemphys.2021.124293
K. Ladi, A. S. Ghrera, Development of electrode by using gold-platinum alloy nanoparticles for electrochemical detection of serum amyloid A protein, Journal of Electrochemical Science and Engineering 14(3) (2024) 339-352. https://doi.org/https://doi.org/10.5599/jese.2036
P. A. Pushpanjali, J. G. Manjunatha, B. M. Amrutha, N. Hareesha, Development of carbon nanotube-based polymer-modified electrochemical sensor for the voltammetric study of Curcumin, Materials Research Innovations 25 (2021) 412-420. https://doi.org/10.1080/14328917.2020.1842589
Z. Sarbandian, H. Beitollahi, an electrochemical sensor based on a modified glassy carbon electrode for detection of epinephrine in the presence of theophylline, ADMET and DMPK 12(2) (2024) 391-402. https://doi.org/10.5599/admet.2082
H. Beitollahi, S. Tajik, S. Z. Mohammadi, M. Baghayeri, Voltammetric determination of hydroxylamine in water samples using a 1-benzyl-4-ferrocenyl-1H-[1, 2, 3]-triazole/carbon nanotube-modified glassy carbon electrode, Ionics 20 (2014) 571-579. https://doi.org/10.1007/s11581-013-1004-0
J. G. Manjunatha, C. Raril, N. Hareesha, M. M. Charithra, P. A. Pushpanjali, G. Tigari, D. K. Ravishankar, S. C. Mallappaji, J. Gowda, Electrochemical fabrication of poly (niacin) modified graphite paste electrode and its application for the detection of riboflavin, The Open Chemical Engineering Journal 14 (2020) 90-98. https://doi.org/10.2174/1874123102014010090
N. Hareesha, J.G. Manjunatha, Z.A. Alothman, Sillanpää M. Simple and affordable graphene nano-platelets and carbon nanocomposite surface decorated with cetrimonium bromide as a highly responsive electrochemical sensor for rutin detection, Journal of Electroanalytical Chemistry 917 (2022) 116388. https://doi.org/10.1016/j.jelechem.2022.116388
Z. Hu, Y. Yang, X.F. Zhang, C. Xu, J. Yao, Integrating two-dimensional MXene fillers into nanocellulose for the fabrication of CO2 separation membranes., Separation and Purification Technology 326 (2023) 124704. https://doi.org/10.1016/j.seppur.2023.124704
J. Guo, H. Zeng, Y. Chen, Emerging nano drug delivery systems targeting cancer-associated fibroblasts for improved antitumor effect and tumor drug penetration, Molecular Pharma-ceutics 17(4) (2020) 1028-1048. https://doi.org/10.1021/acs.molpharmaceut.0c00014
Y. Wei, Q. Wang, Q. Liu, R. Wang, Y. Wang, S. Luo, Y. Zhang, P. Hou, S. Yan, X. Liu, J. Guo, Nano hollow carbon regulated by carbon dots as a high-performance anode for potassium and sodium ion battery, Applied Surface Science 648 (2024) 159017. https://doi.org/10.1016/j.apsusc.2023.159017
C. Li, J. Wang, Y. Yan, P. Huo, X. Wang, MOF-derived NiZnCo-P nano-array for asymmetric supercapacitor, Chemical Engineering Journal 446 (2022) 137108. https://doi.org/10.1016/j.cej.2022.137108
T. V. H. Luu, N. T. M. Tho, T. T. T. Thuy, L. N. Thong, N. T. Dung, P. H. Dang, Synthetization pill-like C-doped ZnO nano-photocatalyst for removing ofloxacin and methylene blue under visible light, Journal of Sol-Gel Science and Technology 110(1) (2024) 204-220. https://doi.org/10.1007/s10971-024-06348-2
A. Sheikh, M. A. Abourehab, A. S. Tulbah, P. Kesharwani, Aptamer-grafted, cell membrane-coated dendrimer loaded with doxorubicin as a targeted nanosystem against epithelial cellular adhesion molecule (EpCAM) for triple negative breast cancer therapy, Journal of Drug Delivery Science and Technology 86 (2023) 104745. https://doi.org/10.1016/j.jddst.2023.104745
D. Ozturk, Fe3O4/Mn3O4/ZnO-rGO hybrid quaternary nano-catalyst for effective treatment of tannery wastewater with the heterogeneous electro-Fenton process: Process optimization, Science of the Total Environment 828 (2022) 154473. https://doi.org/10.1016/j.scitotenv.2022.154473
A. G. Oliveira, J. de Lara Andrade, M. C. Montanha, C. Y. L. Ogawa, T. K. F. de Souza Freitas, J. C. G. Moraes, F. Sato, S. M. Lima, L. H. da Cunha Andrade, A. A. W. Hechenleitner, E. A. G. Pineda, Wastewater treatment using Mg-doped ZnO nano-semiconductors: A study of their potential use in environmental remediation, Journal of Photochemistry and Photobiology A 407 (2021) 113078. https://doi.org/10.1016/j.jphotochem.2020.113078
H. Cheng, L. Chen, D.J. McClements, J. Xu, H., Long, J. Zhao, Z. Xu, M. Meng, Z. Jin, Recent advances in the application of nanotechnology to create antioxidant active food packaging materials, Critical Reviews in Food Science and Nutrition 64(10) (2024) 2890-2905. https://doi.org/10.1080/10408398.2022.2128035
E. Han, Y. Pan, L. Li, J. Cai, Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity, Food Chemistry 426 (2023) 136608. https://doi.org/10.1016/j.foodchem.2023.136608
Y. Li, Y. Yang, Y. Huang, J. Li, P. Zhao, J. Fei, Y. Xie, An ultrasensitive dietary caffeic acid electrochemical sensor based on Pd-Ru bimetal catalyst doped nano sponge-like carbon, Food Chemistry 425 (2023) 136484. https://doi.org/10.1016/j.foodchem.2023.136484
Y. Zhang, N. Li, Y. Xu, M. Yang, X. Luo, C. Hou, D. Huo, An ultra-sensitive electrochemical aptasensor based on Co-MOF/ZIF-8 nano-thin-film by the in-situ electrochemical synthesis for simultaneous detection of multiple biomarkers of breast cancer, Microchemical Journal 187 (2023) 108316. https://doi.org/10.1016/j.microc.2022.108316
K. Kamalasekaran, V. Magesh, R. Atchudan, S. Arya, A. K. Sundramoorthy, Development of electrochemical sensor using iron (III) phthalocyanine/gold nanoparticle/graphene hybrid film for highly selective determination of nicotine in human salivary samples, Biosensors 13(9) (2023) 839. https://doi.org/10.3390/bios13090839
H. Maseed, V. M. Reddy Yenugu, S. S. Devarakonda, S. Petnikota, M. Gajulapalli, V. V. Srikanth, Peroxidase-like Fe3O4 nanoparticle/few-layered graphene composite for electrochemical detection of dopamine, ascorbic acid, and uric acid, ACS Applied Nano Materials 6(19) (2023) 18531-18538. https://pubs.acs.org/page/copyright/permissions.html
C. Raril, J. G. Manjunatha, D. K. Ravishankar, S. Fattepur, G. Siddaraju, L. Nanjundaswamy, Validated electrochemical method for simultaneous resolution of tyrosine, uric acid, and ascorbic acid at polymer modified nano-composite paste electrode, Surface Engineering and Applied Electrochemistry 56 (2020) 415-426. https://doi.org/10.3103/S1068375520040134
H. Beitollahi, M. Shahsavari, I. Sheikhshoaie, S. Tajik, P.M. Jahani, S.Z. Mohammadi, A.A. Afshar, amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A, Food and Chemical Toxicology 161 (2022) 112824. https://doi.org/10.1016/j.fct.2022.112824
S. Pitakrut, P. Sanchayanukun, S. Muncharoen, Determination of salicylic acid content in pharmaceuticals using chitosan@ Fe3O4/CPE electrode detected by SWV technique, ADMET and DMPK 11(2) (2023) 175-184. https://doi.org/10.5599/admet.1682
M. Shahsavari, S. Tajik, I. Sheikhshoaie, F.Garkani Nejad, H. Beitollahi, Synthesis of Fe3O4@ copper (II) imidazolate nanoparticles: Catalytic activity of modified graphite screen printed electrode for the determination of levodopa in presence of melatonin, Microchemical Journal 170 (2021) 106637. https://doi.org/10.1016/j.microc.2021.106637
S. Kalia, R. Kumar, R. Sharma, S. Kumar, D. Singh, R. K. Singh, Two-dimensional layered rGO-MoS2 heterostructures decorated with Fe3O4 nanoparticles as an electrochemical sensor for detection of para-nitrophenol, Journal of Physics and Chemistry of Solids 184 (2024) 111719. https://doi.org/10.1016/j.jpcs.2023.111719
S. Pareek, U. Jain, M. Bharadwaj, K. Saxena, S. Roy, N. Chauhan, an ultrasensitive electrochemical DNA biosensor for monitoring Human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids, Analytical Biochemistry 663 (2023) 115015. https://doi.org/10.1016/j.ab.2022.115015
T. Jindal, P. Phogat, P., Shreya, S. Singh, R. Jha, Electrochemical and optical comparison of Cr3+, Co2+, Ag1+, Hg1+ and Pb4+ doped WO3 as a thin layer working electrode for electrochemical sensing, Applied Physics A 130(7) (2024) 512. https://doi.org/10.1007/s00339-024-07666-6
A. Mohammad, A. H. Asseri, M. I. Khan, T. Yoon, Flexible Electrochemical Sensor for Hydrogen Peroxide Detection by Employing WO3/g-C3N4 Nanostructures, Journal of The Electrochemical Society 170(5) (2023) 057506. https://doi.org/10.1149/1945-7111/acd1bf
S. Manjunatha, N. S. Pavithra, M. Shivanna, G. Nagaraju, C. R. Ravikumar, Synthesis of Citrus Limon mediated SnO2-WO3 nanocomposite: Applications to photocatalytic activity and electrochemical sensor, Journal of Environmental Chemical Engineering 8(6) (2020) 104500. https://doi.org/10.1016/j.jece.2020.104500
G. M. Hingangavkar, Y. H. Navale, T. M. Nimbalkar, R. N. Mulik, V. B. Patil, Hydrothermally engineered WO3 nanoflowers: A selective detection towards toxic NO2 gas, Sensors and Actuators B: Chemical 371 (2022) 132584. https://doi.org/10.1016/j.snb.2022.132584
S. Tajik, P. Mohammadzadeh Jahani, Voltammetric quantification of D-penicillamine by using a Carbon Paste Electrode modified with WO3 nanorods and ionic liquid as an efficient Electrochemical sensing platform, Topics in Catalysis 67(9) (2024) 853-863. https://doi.org/10.1007/s11244-023-01874-9
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.