Electrochemical sensor for determination of hydroxylamine using functionalized Fe3O4 nanoparticles and graphene oxide modified screen-printed electrode
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1145Keywords:
hydroxylamine, electroanalysis, voltammetry, modified electrodeAbstract
A simple strategy for determination of hydroxylamine based on Fe3O4 nanoparticles functionnalized by [2-(4-((3-(trimethoxysilyl)propylthio)methyl)1-H1,2,3-triazol-1-yl)aceticacid] (FNPs) and graphene oxide (GO) modified screen-printed electrode (SPE), denoted as (Fe3O4 FNPs/GO/SPE), is reported. The electrochemical behavior of hydroxylamine was investigated at Fe3O4FNPs/GO/SPE by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA) techniques in phosphate buffer solution (pH 7.0). Fe3O4 FNPs/GO/SPE as a novel electrochemical sensor exhibited catalytic activity toward the oxidation of hydroxylamine. The potential of hydroxylamine oxidation was shifted to more negative potentials, and its oxidation peak current increased on the modified electrode, also indicating that under these conditions, the electrochemical process is irreversible. The electrocatalytic current of hydroxylamine showed a good relationship in the concentration range of 0.05–700.0 μM, with a detection limit of 10.0 nM. The proposed electrode was applied for the determination of hydroxylamine in water samples, too.
Downloads
References
S. Liu, H. Vereecken, N. Brüggemann, Geoderma 232 (2014) 117-122. https://doi.org/10.-1016/¬j.geoderma.2014.05.006
C. Zhao, J. Song, Analytica Chimica Acta 434 (2001) 261-267. https://doi.org/10.1016/S0003-2670(01)00846-7
J. P. Guzowski Jr, C. Golanoski, E. R. Montgomery, Journal of Pharmaceutical and Biomedical Analysis 33 (2003) 963-974. https://doi.org/10.1016/S0731-7085(03)00433-3
M. P. Ngoc Bui, X. H. Pham, K. N. Han, C. A. Li, E. K. Lee, H. J. Chang, G. H. Seong, Electro¬che-mistry Communications 12 (2010) 250-253. https://doi.org/10.1016/j.elecom.2009.12.006
P. N. Fernando, I. N. Egwu, M. S. Hussain, Journal of Chromatography A 956 (2002) 261-270. https://doi.org/10.1016/S0021-9673(02)00145-0
A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M. R. Abedi, M. Ebrahimi, Eurasian Chemical Communications 3 (2021) 627-634. http://dx.doi.org/10.22034/ecc.2021.288271.1182
R. Rajaram, J. Mathiyarasu, Colloids and Surfaces B 170 (2018) 109-114. https://doi.org/10.1016/j.colsurfb.2018.05.066
P. Prasad, N.Y. Sreedhar, Chemical Methodologies 2 (2018) 277-290. https://doi.org/10.22034/CHEMM.2018.63835
S. Azimi, M. Amiri, H. Imanzadeh, A. Bezaatpour, Advanced Journal of Chemistry A 4 (2021) 152-164. https://doi.org/10.22034/ajca.2021.275901.1246
J. Wang, J. Yang, P. Xu, H. Liu, L. Zhang, S. Zhang, L. Tian, Sensors and Actuators B: Chemical 306 (2020) 127590. https://doi.org/10.1016/j.snb.2019.127590
F. Mehri-Talarposhti, A. Ghorbani-Hasan Saraei, L. Golestan, S.A. Shahidi, Asian Journal of Nanosciences and Materials 3 (2020) 313-320. https://doi.org/10.26655/AJNANOMAT.2020.4.5
E. Naghian, E. M. Khosrowshahi, E. Sohouli, F. Ahmadi, M. Rahimi-Nasrabadi, V. Safarifard, New Journal of Chemistry 44 (2020) 9271-9277. https://doi.org/10.1039/D0NJ01322F
M. Pirozmand, A. Nezhadali, M. Payehghadr, L. Saghatforoush. Eurasian Chemical Communications 2 (2020) 1021-1032. https://doi.org/10.22034/ECC.2020.241560.1063
L. Han, H. Tao, M. Huang, Y. Zhang, S. Qiao, R. Shi, Russian Journal of Electrochemistry 52 (2016) 115-122. https://doi.org/10.1134/S1023193516020051
J. Yi, S. Tang, Z. Wang, Y. Yin, S. Yang, B. Zhang, S. Shu, T. Liu, L. Xu, International Journal of Environmental Analytical Chemistry 95 (2015) 158-174. https://doi.org/10.1080/03067319.2014.994616
X. C. Lu, L. Song, T. T. Ding, Y.L . Lin, C. X. Xu, Russian Journal of Electrochemistry 53 (2017) 366–373. https://doi.org/10.1134/S1023193517040073
S. S. Mahmood, A. J. Atiya, F .H. Abdulrazzak, A. F. Alkaim, F. H. Hussein, Journal of Medicinal and Chemical Sciences 4 (2021) 225-229. https://doi.org/10.26655/JMCHEMSCI.2021.3.2
S. Saeidi, F. Javadian, Z. Sepehri, Z. Shahi, F. Mousavi, M. Anbari, International Journal of Advanced Biological and Biomedical Research 4 (2016) 96-99. http://dx.doi.org/10.26655/ijabbr.2016.2.12
R. Jabbari, N. Ghasemi, Chemical Methodologies 5 (2021) 21-29. https://doi.org/10.22034/chemm.2021.118446
A. G. El-Shamy, Materials Chemistry and Physics 243 (2020) 122640. https://doi.org/10.1016/j.matchemphys.2020.122640
S. Gupta, M. Lakshman, Journal of Medicinal and Chemical Sciences 2 (2019) 51-54. https://doi.org/10.26655/JMCHEMSCI.2019.3.3
C. P. Sousa, R. C. de Oliveira, T. M. Freire, P. B. A. Fechine, M. A. Salvador, P. Homem-de-Mello, S. Morais, P. de Lima-Neto, A. N. Correia, Sensors and Actuators B: Chemical 240 (2017) 417-425. https://doi.org/10.1016/j.snb.2016.08.181
M. P. Kingsley, P. B. Desai, A. K. Srivastava, Journal of Electroanalytical Chemistry 741 (2015) 71-79. https://doi.org/10.1016/j.jelechem.2014.12.039
F. Li, X. Jiang, J. Zhao, S. Zhang, Nano Energy 16 (2015) 488–515. https://doi.org/10.1016/j.nanoen.2015.07.014
N. N. Song, Y. Z. Wang, X. Y. Yang, H. L. Zong, Y. X. Chen, Z. Ma, C. X. Chen, Journal of Electro¬analytical Chemistry 873 (2020) 114352. https://doi.org/10.1016/j.jelechem.2020.114352
M. M. Lakouraj, H. Tashakkorian, Supramolecular Chemistry 25 (2013) 221-232. https://doi.org/10.1080/10610278.2012.758366
M. M. Lakouraj, H. Tashakkorian, Journal of Macromolecular Science, Part A, 50 (2013) 310-320. https://doi.org/10.1080/10601325.2013.755859
M. S. Darwish, N. H. Nguyen, A. Ševců, I. Stibor, Journal of Nanomaterials 16 (2015) 89. https://doi.org/10.1155/2015/416012
A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, second ed, Wiley, New York, 2001.
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.