Electrochemical sensor for determination of hydroxylamine using functionalized Fe3O4 nanoparticles and graphene oxide modified screen-printed electrode

Original scientific paper

Authors

  • Hamed Tashakkorian Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Iran and Department of Pharmacology, School of Medicine, Babol University of Medical Sciences, Babol, Iran 3Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
  • Behnaz Aflatoonian Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
  • Peyman Mohammadzadeh Jahani School of Public Health, Bam University of Medical Sciences, Bam, Iran
  • Mohammad Reza Aflatoonian Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran

DOI:

https://doi.org/10.5599/jese.1145

Keywords:

hydroxylamine, electroanalysis, voltammetry, modified electrode
Graphical Abstract

Abstract

A simple strategy for determination of hydroxylamine based on Fe3O4 nanoparticles function­nalized by [2-(4-((3-(trimethoxysilyl)propylthio)methyl)1-H1,2,3-triazol-1-yl)acetic­acid] (FNPs) and graphene oxide (GO) modified screen-printed electrode (SPE), denoted as (Fe3O4 FNPs/GO/SPE), is reported. The electrochemical behavior of hydroxylamine was investigated at Fe3O4FNPs/GO/SPE by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chro­noamperometry (CHA) techniques in phosphate buffer solution (pH 7.0). Fe3O4 FNPs/GO/SPE as a novel electrochemical sensor exhibited catalytic activity toward the oxidation of hydroxyl­ami­ne. The potential of hydroxylamine oxidation was shifted to more negative potentials, and its oxidation peak current increased on the modified electrode, also indicating that under these conditions, the electrochemical process is irreversible. The electrocatalytic current of hydroxyl­amine showed a good relationship in the concentration range of 0.05–700.0 μM, with a detection limit of 10.0 nM. The proposed electrode was applied for the determination of hydroxyl­amine in water samples, too.

Downloads

Download data is not yet available.

References

S. Liu, H. Vereecken, N. Brüggemann, Geoderma 232 (2014) 117-122. https://doi.org/10.-1016/¬j.geoderma.2014.05.006

C. Zhao, J. Song, Analytica Chimica Acta 434 (2001) 261-267. https://doi.org/10.1016/S0003-2670(01)00846-7

J. P. Guzowski Jr, C. Golanoski, E. R. Montgomery, Journal of Pharmaceutical and Biomedical Analysis 33 (2003) 963-974. https://doi.org/10.1016/S0731-7085(03)00433-3

M. P. Ngoc Bui, X. H. Pham, K. N. Han, C. A. Li, E. K. Lee, H. J. Chang, G. H. Seong, Electro¬che-mistry Communications 12 (2010) 250-253. https://doi.org/10.1016/j.elecom.2009.12.006

P. N. Fernando, I. N. Egwu, M. S. Hussain, Journal of Chromatography A 956 (2002) 261-270. https://doi.org/10.1016/S0021-9673(02)00145-0

A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M. R. Abedi, M. Ebrahimi, Eurasian Chemical Communications 3 (2021) 627-634. http://dx.doi.org/10.22034/ecc.2021.288271.1182

R. Rajaram, J. Mathiyarasu, Colloids and Surfaces B 170 (2018) 109-114. https://doi.org/10.1016/j.colsurfb.2018.05.066

P. Prasad, N.Y. Sreedhar, Chemical Methodologies 2 (2018) 277-290. https://doi.org/10.22034/CHEMM.2018.63835

S. Azimi, M. Amiri, H. Imanzadeh, A. Bezaatpour, Advanced Journal of Chemistry A 4 (2021) 152-164. https://doi.org/10.22034/ajca.2021.275901.1246

J. Wang, J. Yang, P. Xu, H. Liu, L. Zhang, S. Zhang, L. Tian, Sensors and Actuators B: Chemical 306 (2020) 127590. https://doi.org/10.1016/j.snb.2019.127590

F. Mehri-Talarposhti, A. Ghorbani-Hasan Saraei, L. Golestan, S.A. Shahidi, Asian Journal of Nanosciences and Materials 3 (2020) 313-320. https://doi.org/10.26655/AJNANOMAT.2020.4.5

E. Naghian, E. M. Khosrowshahi, E. Sohouli, F. Ahmadi, M. Rahimi-Nasrabadi, V. Safarifard, New Journal of Chemistry 44 (2020) 9271-9277. https://doi.org/10.1039/D0NJ01322F

M. Pirozmand, A. Nezhadali, M. Payehghadr, L. Saghatforoush. Eurasian Chemical Communications 2 (2020) 1021-1032. https://doi.org/10.22034/ECC.2020.241560.1063

L. Han, H. Tao, M. Huang, Y. Zhang, S. Qiao, R. Shi, Russian Journal of Electrochemistry 52 (2016) 115-122. https://doi.org/10.1134/S1023193516020051

J. Yi, S. Tang, Z. Wang, Y. Yin, S. Yang, B. Zhang, S. Shu, T. Liu, L. Xu, International Journal of Environmental Analytical Chemistry 95 (2015) 158-174. https://doi.org/10.1080/03067319.2014.994616

X. C. Lu, L. Song, T. T. Ding, Y.L . Lin, C. X. Xu, Russian Journal of Electrochemistry 53 (2017) 366–373. https://doi.org/10.1134/S1023193517040073

S. S. Mahmood, A. J. Atiya, F .H. Abdulrazzak, A. F. Alkaim, F. H. Hussein, Journal of Medicinal and Chemical Sciences 4 (2021) 225-229. https://doi.org/10.26655/JMCHEMSCI.2021.3.2

S. Saeidi, F. Javadian, Z. Sepehri, Z. Shahi, F. Mousavi, M. Anbari, International Journal of Advanced Biological and Biomedical Research 4 (2016) 96-99. http://dx.doi.org/10.26655/ijabbr.2016.2.12

R. Jabbari, N. Ghasemi, Chemical Methodologies 5 (2021) 21-29. https://doi.org/10.22034/chemm.2021.118446

A. G. El-Shamy, Materials Chemistry and Physics 243 (2020) 122640. https://doi.org/10.1016/j.matchemphys.2020.122640

S. Gupta, M. Lakshman, Journal of Medicinal and Chemical Sciences 2 (2019) 51-54. https://doi.org/10.26655/JMCHEMSCI.2019.3.3

C. P. Sousa, R. C. de Oliveira, T. M. Freire, P. B. A. Fechine, M. A. Salvador, P. Homem-de-Mello, S. Morais, P. de Lima-Neto, A. N. Correia, Sensors and Actuators B: Chemical 240 (2017) 417-425. https://doi.org/10.1016/j.snb.2016.08.181

M. P. Kingsley, P. B. Desai, A. K. Srivastava, Journal of Electroanalytical Chemistry 741 (2015) 71-79. https://doi.org/10.1016/j.jelechem.2014.12.039

F. Li, X. Jiang, J. Zhao, S. Zhang, Nano Energy 16 (2015) 488–515. https://doi.org/10.1016/j.nanoen.2015.07.014

N. N. Song, Y. Z. Wang, X. Y. Yang, H. L. Zong, Y. X. Chen, Z. Ma, C. X. Chen, Journal of Electro¬analytical Chemistry 873 (2020) 114352. https://doi.org/10.1016/j.jelechem.2020.114352

M. M. Lakouraj, H. Tashakkorian, Supramolecular Chemistry 25 (2013) 221-232. https://doi.org/10.1080/10610278.2012.758366

M. M. Lakouraj, H. Tashakkorian, Journal of Macromolecular Science, Part A, 50 (2013) 310-320. https://doi.org/10.1080/10601325.2013.755859

M. S. Darwish, N. H. Nguyen, A. Ševců, I. Stibor, Journal of Nanomaterials 16 (2015) 89. https://doi.org/10.1155/2015/416012

A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, second ed, Wiley, New York, 2001.

Downloads

Published

17-11-2021

How to Cite

Tashakkorian, H. ., Aflatoonian, B., Jahani, P. M. ., & Aflatoonian, M. R. (2021). Electrochemical sensor for determination of hydroxylamine using functionalized Fe3O4 nanoparticles and graphene oxide modified screen-printed electrode: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(1), 71–79. https://doi.org/10.5599/jese.1145

Issue

Section

Electrochemical Science

Most read articles by the same author(s)