A sensitive Cu(salophen) modified screen-printed electrode for simultaneous determination of dopamine and uric acid

Original scientific paper

  • Hadi Beitollahi School of Medicine, Bam University of Medical Sciences, Bam, Iran and Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran https://orcid.org/0000-0002-0669-5216
  • Somayeh Tajik Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran https://orcid.org/0000-0002-1151-5515
  • Mohammad Reza Aflatoonian Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
  • Asghar Makarem Department of Rehabmanagement, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
Keywords: Dopamine, uric acid, screen printed electrode, voltammetry, chemically modified electrodes, real sample analysis
Graphical Abstract

Abstract

This research applied a nanostructured electrochemical sensor with a screen-printed electrode (SPE) for examining the dopamine (DA) electrocatalytic oxidation when uric acid (UA) was present. Cu(salophen) nanostructured modified SPE (Cu(salophen)/SPE) was employed to investigate the electrochemical behavior of DA. At optimal pH (pH 7.0), oxidation of DA at the modified electrode takes place at a potential around 100 mV less positive than at the unmodified SPE. Chronoamperometry was used to determine the diffusion coefficient of DA (D = 1.96×10-5 cm2 s-1). Differential pulse voltammetry (DPV) showed linear response in the range between 0.2-450.0 μM for DA. The limit of detection (LOD) of DA was computed to be 0.05 μM. Moreover, Cu(salophen)/SPE was employed for determining DA in the presence of UA using DPV. The DPV results showed that at the modified electrode, two well-separated oxidation peaks of DA and UA could be obtained at potentials of 180 and 325 mV, respectively. This separation forms the basis for the co-detection of these two materials on the surface of Cu(salophen)/SPE. This sensor was then employed to determine DA and UA in real specimens.

Downloads

Download data is not yet available.

References

Y. P. Dong, L. Huang, X. F. Chu, L. Z. Pei, Russian Journal of Electrochemistry 49 (2013) 571-576. https://doi.org/10.1134/S1023193513060037

A. R. Marlinda, S. Sagadevan, N. Yusoff, A. Pandikumar, N. M. Huang, O. Akbarzadeh, M. R. Johan, Journal of Alloys and Compounds 847 (2020) 156552. https://doi.org/10.1016/j.jallcom.2020.156552

W. Dang, Y. Sun, H. Jiao, L. Xu, M. Lin, Journal of Electroanalytical Chemistry 856 (2020) 113592. https://doi.org/10.1016/j.jelechem.2019.113592

Y. Li, W.C. Chen, S. M. Chen, B. S. Lou, Colloids and Surfaces B 113 (2014) 85-91. https://doi.org/10.1016/j.colsurfb.2013.08.028

F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Composites Part B 172 (2019) 666-670. https://doi.org/10.1016/j.compositesb.2019.05.065

M. D. Jerez-Masaquiza, L. Fernández, G. González, M. Montero-Jiménez, P. J. Espinoza-Montero, Nanomaterials 10 (2020) 1328.‏ https://doi.org/10.3390/nano10071328

S. Luo, Y. Wu, H. Gou, Ionics 19 (2013) 673-680. https://doi.org/10.1007/s11581-013-0868-3

S. Tajik, H. Beitollahi, F. Garkani-Nejad, I. Sheikhshoaie, A. Sugih Nugraha, H. Won Jang, Y. Yamauchi, M. Shokouhimehr, Journal of Materials Chemistry A 9 (2021) 8195-8220. https://doi.org/10.1039/D0TA08344E

H. Karimi-Maleh, Y. Orooji, F. Karimi, M. Alizadeh, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, A. Ayati, L. Fu, A.L. Sanati, B. Tanhaei, F. Sen, M. Shabani-Nooshabadi, P. Naderi Asrami, A. Al-Othman, Biosensors and Bioelectronics 184 (2021) 113252. https://doi.org/10.1016/j.bios.2021.113252

N. P. Shetti, D. S. Nayak, S. J. Malode, R. M. Kulkarni, Sensors and Actuators B 247 (2017) 858-867. https://doi.org/10.1016/j.snb.2017.03.102

Y. Tian, P. Deng, Y. Wu, J. Li, J. Liu, G. Li, Q. He, Journal of the Electrochemical Society 167 (2020) 046514. https://doi.org/10.1149/1945-7111/ab79a7

H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, F. Saberi-Movahed, S. Malekmohammadi, Industrial and Engineering Chemistry Research 60 (2021) 816-823. https://doi.org/10.1021/acs.iecr.0c04698

Q. Feng, K. Duan, X. Ye, D. Lu, Y. Du, C. Wang, Sensors and Actuators B 192 (2014) 1-8. https://doi.org/10.1016/j.snb.2013.10.087

H. Karimi-Maleh, M. Lütfi Yola, N. Atar, Y. Orooji, F. Karimi, P. Senthil Kumar, J. Rouhi, M. Baghayeri, Journal of Colloid and Interface Science 592 (2021) 174-185. https://doi.org/10.1016/j.jcis.2021.02.066

V. Vinothkumar, A. Sangili, S. M. Chen, T. W. Chen, M. Abinaya, V. Sethupathi, International Journal of Electrochemical Science 15 (2020) 2414-2429. https://doi.org/10.20964/2020.03.08

S. Cheemalapati, S. Palanisamy, V. Mani, S. M. Chen, Talanta 117 (2013)297-304. https://doi.org/10.1016/j.talanta.2013.08.041

H. Karimi-Maleh, O. A. Arotiba, Journal of Colloid and Interface Science 560 (2020) 208-212. https://doi.org/10.1016/j.jcis.2019.10.007

H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N. W. Maxakato, A. Abbaspourrad, New Journal of Chemistry 43 (2019) 2362-2367. https://doi.org/10.1039/C8NJ05581E

F. Terzi, J. Pelliciari, C. Zanardi, L. Pigani, A. Viinikanoja, J. Lukkari, R. Seeber, Analytical and Bioanalytical Chemistry 405 (2013) 3579-3586. https://doi.org/10.1007/s00216-012-6648-5

G. Emir, Y. Dilgin, A. Ramanaviciene, A. Ramanavicius, Microchemical Journal 161 (2021) 105751.‏ https://doi.org/10.1016/j.microc.2020.105751

H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Materials Chemistry and Physics 250 (2020) 123042. https://doi.org/10.1016/j.matchemphys.2020.123042

D. Yuan, S. Chen, R. Yuan, J. Zhang, X. Liu, Sensors and Actuators B: Chemical 191 (2014) 415-420. https://doi.org/10.1016/j.snb.2013.10.013

H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, Scientific reports 10 (2020) 11699. https://doi.org/10.1038/s41598-020-68663-2

S. Güney, T. Arslan, S. Yanık, O. Güney, Electroanalysis 33 (2021) 46-56. https://doi.org/10.1002/elan.202060129

Z. Xing, Q. Chu, X. Ren, J. Tian, A.M. Asiri, K.A. Alamry, A.O. Al-Youbi, Sun X., Electrochemistry Communications 32 (2013) 9-13. https://doi.org/10.1016/j.elecom.2013.03.033

H. Beitollahi, S. Tajik, F. Garkani-Nejad, M. Safaei, Journal of Materials Chemistry B 8 (2020) 5826-5844. https://doi.org/10.1039/D0TB00569J

X. Xiao, Z. Zhang, F. Nan, Y. Zhao, P. Wang, F. He, Y. Wang, Journal of Alloys and Compounds 852 (2021) 157045. https://doi.org/10.1016/j.jallcom.2020.157045

N. Qiao, J. Zheng, Microchimica Acta 177 (2012) 103-109. https://doi.org/10.1007/s00604-011-0756-3

M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, Journal of Molecular Liquids 278 (2019) 672-676. https://doi.org/10.1016/j.molliq.2019.01.081

A. Baghizadeh, H. Karimi-Maleh, Z. Khoshnama, A. Hassankhani, M. Abbasghorbani, Food Analytical Methods 8 (2015) 549-557. https://doi.org/10.1007/s12161-014-9926-3

N. S. Anuar, W. J. Basirun, M. Shalauddin, S. Akhter, RSC Advances 10 (2020) 17336-17344. https://doi.org/10.1039/C9RA11056A

Q. Yan, N. Zhi, L. Yang, G. Xu, Q. Feng, Q. Zhang, S. Sun, Scientific Reports 10 (2020) 1-10.https://doi.org/10.1038/s41598-020-67394-8

H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M. Lütfi Yola, N. Atar, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal, V. K. Gupta, Journal of Molecular Liquids 310 (2020) 113185. https://doi.org/10.1016/j.molliq.2020.113185

S. Tajik, H. Beitollahi, S. A. Ahmadi, M. B. Askari, A. Di Bartolomeo, Nanomaterials 11 (2021) 3208. https://doi.org/10.3390/nano11123208

H. Karimi-Maleh, O.A. Arotiba, Journal of Colloid and Interface Science 560 (2020) 208-212. https://doi.org/10.1016/j.jcis.2019.10.007

F. Azadmehr, K. Zarei, Arabian Journal of Chemistry 13 (2020) 1890-1900. https://doi.org/10.1016/j.arabjc.2018.02.004

S.S. Fu, G.A. Samorijai, The Journal of Physical Chemistry 96 (1992) 4542-4549. https://doi.org/10.1021/j100190a076

S. Tajik, H. Beitollahi, H. Won Jang, M. Shokouhimehr, Talanta 232 (2021) 122379. https://doi.org/10.1016/j.talanta.2021.122379

S. Kolahi-Ahari, B. Deiminiat, G.H. Rounaghi, Journal of Electroanalytical Chemistry 862 (2020) 113996. https://doi.org/10.1016/j.jelechem.2020.113996

L. Yue-ming, L. Jing, T. Zhan-liang, C. Jun, Materials Research Bulletin 43 (2008)2380-2385. https://doi.org/10.1016/j.materresbull.2007.07.045

A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, Sensors and Actuators B Chemical 284 (2019) 568 -574. https://doi.org/10.1016/j.snb.2018.12.164

F. Garkani-Nejad, S. Tajik, H. Beitollahi, I. Sheikhshoaie, Talanta 228 (2021) 122075. https://doi.org/10.1016/j.talanta.2020.122075

P. Sankaranarayanan, S. V. Venkateswaran, Journal of Electrochemical Sciences and Engineering 10 (2020) 263-279 https://doi.org/10.5599/jese.783

Y. Wei, M. Li, S. Jiao, Q. Huang, G. Wang, B. Fang, Electrochimica Acta 52 (2006) 766-772. https://doi.org/10.1016/j.electacta.2006.06.006

S. Shahrokhian, Z. Kamalzadeh, A. Bezaatpour, D. M. Boghaei, Sensors and Actuators B 133 (2008) 599–606. https://doi.org/10.1016/j.snb.2008.03.034

R. Suresh Babu, P. Prabhu, S. Sriman Narayanan, Materials Today: Proceedings 36 (2021) 867-872. https://doi.org/10.1016/j.matpr.2020.07.020

P. Pedro Adao, J. C. Pessoa, R. T. Henriques, M. L. Kuznetsov, F. Avecilla, M. R. Maurya, U. Kumar, I. Correia, Inorganic Chemistry 48 (2009) 3542-3561. https://doi.org/10.1021/ic8017985

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Wiley, New York (2001). ISBN: 978-0-471-04372-0

Published
24-02-2022
Section
Electrochemical Science