Electrochemical determination of tramadol using modified screen printed electrode
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1141Keywords:
La3 /ZnO nano-flower, multi-walled carbon nanotubes, voltammetry
Abstract
The detection of tramadol using a screen printed electrode modified with La3+/ZnO nano-flowers and multi-walled carbon nanotubes (La3+/ZnO NFs-MWCNTs/SPE) is reported in this work. In order to examine tramadol electrochemical oxidation, the modified electrode was implemented with the utilization of differential pulse voltammetry, chronoamperometry and cyclic voltammetry as diagnostic techniques. The proposed electrode displays favorable electrocatalytic behavior concerning tramadol oxidation with an approximately 330 mV potential shift to a lesser positive potential. In the 0.5 to 800.0 μM range for tramadol, differential pulse voltammetry displays linear dynamic activity. Tramadol detection limit of 0.08 μM was derived within optimized testing conditions for this simple construction sensor. Lastly, this fabricated sensor was utilized with desirable results to determine tramadol in tramadol samples and urine samples.
Downloads
References
G. C. de Souza Fiaes, C. M. Roncon, C. C. Sestile, J. C. Maraschin, R. L. S. Souza, M. Porcu, E. A. Audi, Behavioural Brain Research 326 (2017) 52-58. https://doi.org/10.1016/j.bbr.2017.02.041
J. Faria, J. Barbosa, S. Leal, L. P. Afonso, J. Lobo, R. Moreira, O. Queirós, F. Carvalho, R. J. Dinis-Oliveira, Toxicology 385 (2017) 38-47. https://doi.org/10.1016/j.tox.2017.05.003
C. Lagard, L. Chevillard, I. Malissin, P. Risède, J. Callebert, L. Labat, J. M. Launay, J. L. Laplanche, B. Mégarbane, Toxicology and Applied Pharmacology 310 (2016) 108-119. https://doi.org/10.1016/j.taap.2016.09.013
D. Chepyala, I. L. Tsai, H. W. Liao, G. Y. Chen, H. C. Chao, C. H. Kuo, Journal of Chromatogra-phy A 1491 (2017) 57-66. https://doi.org/10.1016/j.chroma.2017.02.037
B. Petrie, J. Youdan, R. Barden, B. Kasprzyk-Hordern, Journal of Chromatography A 1431 (2016) 64-78. https://doi.org/10.1016/j.chroma.2015.12.036
S. Glavanović, M. Glavanović, V. Tomišić, Spectrochimica Acta Part A 157 (2016) 258-264. https://doi.org/10.1016/j.saa.2015.12.020
M. Zečević, Ž. Stanković, L. Živanović, B. Jocić, Journal of Chromatography A 1119 (2006) 251-256. https://doi.org/10.1016/j.chroma.2005.11.105
V. S. Tambe, M. N. Deodhar, V. Prakya, Bulletin of Faculty of Pharmacy, Cairo University 54 (2016) 87-97.
A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M. R. Abedi, M. Ebrahimi, Eurasian Chemical Communications 3 (2021) 627-634. http://dx.doi.org/10.22034/ecc.2021.288271.1182
R. Rajaram, J. Mathiyarasu, Colloids and Surfaces B 170 (2018) 109-114. https://doi.org/10.1016/j.colsurfb.2018.05.066
F. Mehri-Talarposhti, A. Ghorbani-Hasan Saraei, L. Golestan, S.A. Shahidi, Asian Journal of Nanosciences and Materials 3 (2020) 313-320. https://doi.org/10.26655/AJNANOMAT.2020.4.5
S. Azimi, M. Amiri, H. Imanzadeh, A. Bezaatpour, Advanced Journal of Chemistry - Section A 4 (2021) 152-164. https://doi.org/10.22034/ajca.2021.275901.1246
J. Wang, J. Yang, P. Xu, H. Liu, L. Zhang, S. Zhang, L. Tian, Sensors and Actuators B 306 (2020) 127590. https://doi.org/10.1016/j.snb.2019.127590
E. Naghian, E. M. Khosrowshahi, E. Sohouli, F. Ahmadi, M. Rahimi-Nasrabadi, V. Safarifard, New Journal of Chemistry 44 (2020) 9271-9277. https://doi.org/10.1039/D0NJ01322F
S. S. Mahmood, A. J. Atiya, F. H. Abdulrazzak, A. F. Alkaim, F. H. Hussein, Journal of Medicinal and Chemical Sciences 4 (2021) 225-229. https://doi.org/10.26655/JMCHEMSCI.2021.3.2
S. Saeidi, F. Javadian, Z. Sepehri, Z. Shahi, F. Mousavi, M. Anbari, International Journal of Advanced Biological and Biomedical Research 4 (2016) 96-99. http://dx.doi.org/10.26655/ijabbr.2016.2.12
R. Jabbari, N. Ghasemi, Chemical Methodologies 5 (2021) 21-29. https://doi.org/10.22034/chemm.2021.118446
A. G. El-Shamy, Materials Chemistry and Physics 243 (2020) 122640. https://doi.org/10.1016/j.matchemphys.2020.122640
S. Gupta, M. Lakshman, Journal of Medicinal and Chemical Sciences 2 (2019) 51-54. https://doi.org/10.26655/JMCHEMSCI.2019.3.3
Y. M. Zhang, P. L. Xu, Q. Zeng, Y. M. Liu, X. Liao, M. F. Hou, Materials Science and Engineering C 74 (2017) 62-69. https://doi.org/10.1016/j.msec.2017.01.005
Y. H. Chen, R. Kirankumar, C. L. Kao, P. Y. Chen, Electrochimica Acta 205 (2016) 124-131. https://doi.org/10.1016/j.electacta.2016.04.111
L. Zhang, W. He, K. Shen, Y. Liu, S. Guo, Journal of Physics and Chemistry of Solids 115 (2018) 215-220. https://doi.org/10.1016/j.jpcs.2017.12.047
L. Zhu, Y. Li, W. Zeng, Physica E: Low-dimensional Systems and Nanostructures 94 (2017) 123-125. https://doi.org/10.1016/j.physe.2017.08.004
Y. Tang, P. Liu, J. Xu, L. Li, L. Yang, X. Liu, Y. Zhou, Sensors and Actuators B 258 (2018) 906-912. https://doi.org/10.1016/j.snb.2017.11.071
M. Trojanowicz, TrAC Trends in Analytical Chemistry 25 (2006) 480-489. https://doi.org/10.1016/j.trac.2005.11.008
M. Govindasamy, S. M. Chen, V. Mani, R. Devasenathipathy, R. Umamaheswari, K. J. Santhanaraj, A. Sathiyan, Journal of Colloid and Interface Science 485 (2017) 129-136. https://doi.org/10.1016/j.jcis.2016.09.029
A. J. Bard and L. R. Faulkner, Fundamentals and applications. Electrochemical Methods. 2 (2001) 482.
F. Ghorbani-Bidkorbeh, S. Shahrokhian, A. Mohammadi, R. Dinarvand, Electrochimica Acta 55 (2010) 2752-2759. https://doi.org/10.1016/j.electacta.2009.12.052
M. Hassannezhad, M. Hosseini, M.R. Ganjali, M. Arvand, Analytical Methods 11 (2019) 2064-2071. https://doi.org/10.1039/C9AY00146H
S. Chitravathi, N. Munichandraiah, Journal of Electroanalytical Chemistry 764 (2016) 93-103. https://doi.org/10.1016/j.jelechem.2016.01.021
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.