Immobilized triton X-100 voltammetric sensor for the simultaneous detection of sunset yellow and tartrazine

Original scientific paper

Authors

  • Puneeth Department of P. G. Studies and Research in Industrial Chemistry, Kuvempu University, JnanaShyadri, Shankaraghatta, Shivmoga, Karnataka, 577451, India https://orcid.org/0009-0004-8544-9620
  • B. E. Kumara Swamy Department of PG Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta, 577451, Shimoga, Karnataka, India https://orcid.org/0000-0002-2433-0739
  • S. C. Sharma Jain University, Bangalore, Karnataka, 560 069, India https://orcid.org/0009-0009-9544-8257

DOI:

https://doi.org/10.5599/jese.2589

Keywords:

Synthetic azo dyes, binary mixture, non-ionic surfactant, immobilization method

Abstract

In this study, we developed a sensor utilizing a pencil graphite electrode combined with triton X-100 surfactant prepared by immobilization technique. This modified electrode can concurrently detect sunset yellow (SY) and tartrazine (TZ) in a binary mixture. Both com¬pounds are synthetic azo dyes known to have hazardous effects on human health, including the potential for malignant growth at prolonged exposure. The modified electrode shows remarkable sensitivity toward SY and TZ individually and in combination. We conducted pH studies, scan rate analysis, reproducibility tests, and simultaneous detection studies using cyclic voltammetry. Differential pulse voltammetry technique was used to investigate concentration and mutual interference effects. Our pH study found that the maximum anodic peak current for SY occurs at pH 7.4, while TZ shows a higher current at pH 7.0. The scan rate analysis indicated that anodic reactions of both dyes are adsorption process controlled. The limit of detection (LOD) and limit of quantification (LOQ) for SY are 0.17 and 0.59 µM, respectively, while for TZ, the LOD and LOQ are 0.67 and 2.26 µM, respectively. The surfactant-modified pencil electrode demonstrates excellent peak separation between SY and TZ in a binary mixture, exhibiting stability of 86.3 % for sunset yellow and 65 % for tartrazine over 25 cycles.

Downloads

Download data is not yet available.

References

P. Barciela, A. Perez-Vazquez, M. A. Prieto, Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation, Food and Chemical Toxicology 178 (2023) 113935. https://doi.org/10.1016/j.fct.2023.113935

L.-H. Ahlström, E. Björklund, L. Mathiasson, Optimization of an analytical procedure for the determination of banned azo dyes in leather, Analytical and Bioanalytical Chemistry 382 (2005) 1320-1327. https://doi.org/10.1007/s00216-005-3240-2

S. Sarkar, A. Banerjee, U. Halder, R. Biswas, R. Bandopadhyay, Degradation of Synthetic Azo Dyes of Textile Industry: a Sustainable Approach Using Microbial Enzymes, Water Conservation Science and Engineering 2 (2017) 121-131. https://doi.org/10.1007/s41101-017-0031-5

Md. N. Khan, D. K. Parmar, D. Das, Recent Applications of Azo Dyes: A Paradigm Shift from Medicinal Chemistry to Biomedical Sciences, Mini-Reviews in Medicinal Chemistry 21 (2021) 1071-1084. https://doi.org/10.2174/1389557520999201123210025

K. Mezgebe, E. Mulugeta, Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: a review, RSC Advances 12 (2022) 25932-25946. https://doi.org/10.1039/D2RA04934A

M. A. Brown, S. C. De Vito, Predicting azo dye toxicity, Critical Reviews in Environmental Science and Technology 23 (1993) 249-324. https://doi.org/10.1080/10643389309388453

C. Ramos‐Souza, D. H. Bandoni, A. P. A. Bragotto, V. V. De Rosso, Risk assessment of azo dyes as food additives: Revision and discussion of data gaps toward their improvement, Comprehensive Reviews in Food Science and Food Safety 22 (2023) 380-407. https://doi.org/10.1111/1541-4337.13072

C. Keshava, S. Nicolai, S. V. Vulimiri, F.A. Cruz, N. Ghoreishi, S. Knueppel, A. Lenzner, P. Tarnow, J.T. Vanselow, B. Schulz, A. Persad, N. Baker, K.A. Thayer, A.J. Williams, R. Pirow, Application of systematic evidence mapping to identify available data on the potential human health hazards of selected market-relevant azo dyes, Environment International 176 (2023) 107952. https://doi.org/10.1016/j.envint.2023.107952

F. Pirvu, V. Iancu, M. Niculescu, C. B. Lehr, L. F. Pascu, T. Galaon, Environmental detection of Brilliant Blue, Sunset Yellow and Tartrazine using direct injection HPLC-DAD technique, Revista de Chimie 71 (2020) 390-400. https://doi.org/10.37358/RC.20.6.8205

L. Del Giovine, A. Piccioli Bocca, Determination of synthetic dyes in ice-cream by capillary electrophoresis, Food Control 14 (2003) 131-135. https://doi.org/10.1016/S0956-7135(02)00055-5

M. Fuh, Determination of sulphonated azo dyes in food by ion-pair liquid chromatography with photodiode array and electrospray mass spectrometry detection, Talanta 56 (2002) 663-671. https://doi.org/10.1016/S0039-9140(01)00625-7

F. Soponar, A. C. Moţ, C. Sârbu, Quantitative determination of some food dyes using digital processing of images obtained by thin-layer chromatography, Journal of Chromatography A 1188 (2008) 295-300. https://doi.org/10.1016/j.chroma.2008.02.077

P. Amchova, F. Siska, J. Ruda-Kucerova, Safety of tartrazine in the food industry and potential protective factors, Heliyon 10 (2024) e38111. https://doi.org/10.1016/j.heliyon.2024.e38111

H. Alp, D. Başkan, A. Yaşar, N. Yaylı, Ü. Ocak, M. Ocak, Simultaneous Determination of Sunset Yellow FCF, Allura Red AC, Quinoline Yellow WS, and Tartrazine in Food Samples by RP-HPLC, Journal of Chemistry 2018 (2018) 6486250. https://doi.org/10.1155/2018/6486250

F. Feng, Y. Zhao, W. Yong, L. Sun, G. Jiang, X. Chu, Highly sensitive and accurate screening of 40 dyes in soft drinks by liquid chromatography-electrospray tandem mass spectrometry, Journal of Chromatography B 879 (2011) 1813-1818. https://doi.org/10.1016/j.jchromb.2011.04.014

S. Suzuki, M. Shirao, M. Aizawa, H. Nakazawa, K. Sasa, H. Sasagawa, Determination of synthetic food dyes by capillary electrophoresis, Journal of Chromatography A 680 (1994) 541-547. https://doi.org/10.1016/0021-9673(94)85153-0

J. Su, X. Su, Determination of tartrazine in sports drinks by a disposable electrochemical sensor modified with Co2O3, Journal of Food Measurement and Characterization 17 (2023) 5856-5863. https://doi.org/10.1007/s11694-023-02094-1

E. Sohouli, A. H. Keihan, F. Shahdost-fard, E. Naghian, M. E. Plonska-Brzezinska, M. Rahimi-Nasrabadi, F. Ahmadi, A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl, Materials Science and Engineering C 110 (2020) 110684. https://doi.org/10.1016/j.msec.2020.110684

M. Jaafariasl, E. Shams, M. K. Amini, Silica gel modified carbon paste electrode for electrochemical detection of insulin, Electrochimica Acta 56 (2011) 4390-4395. https://doi.org/10.1016/j.electacta.2010.12.052

P. Prasertying, M. Yamkesorn, K. Chimsaard, N. Thepsuparungsikul, S. Chaneam, K. Kalcher, R. Chaisuksant, Modified pencil graphite electrode as a low-cost glucose sensor, Journal of Science: Advanced Materials and Devices 5 (2020) 330-336. https://doi.org/10.1016/j.jsamd.2020.07.004

A. M. Nassar, H. Salah, N. Hashem, M. Khodari, H. F. Assaf, Electrochemical Sensor Based on CuO Nanoparticles Fabricated from Copper Wire Recycling-loaded Carbon Paste Electrode for Excellent Detection of Theophylline in Pharmaceutical Formulations, Electrocatalysis 13 (2022) 154-164. https://doi.org/10.1007/s12678-021-00698-z

M. Kenarkob, Z. Pourghobadi, Electrochemical sensor for acetaminophen based on a glassy carbon electrode modified with ZnO/Au nanoparticles on functionalized multi-walled carbon nano-tubes, Microchemical Journal 146 (2019) 1019-1025. https://doi.org/10.1016/j.microc.2019.02.038

A. Kannan, S. Manojkumar, S. Radhakrishnan, A Facile Fabrication of Poly‐ethionine Film on Glassy Carbon Electrode for Simultaneous and Sensitive Detection of Dopamine and Paracetamol, Electroanalysis 33 (2021) 1175-1184. https://doi.org/10.1002/elan.202060451

G. Manasa, R. J. Mascarenhas, A. K. Satpati, O. J. D’Souza, A. Dhason, Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin, Materials Science and Engineering C 73 (2017) 552-561. https://doi.org/10.1016/j.msec.2016.12.114

M. Behpour, A. M. Attaran, M. M. Sadiany, A. Khoobi, Adsorption effect of a cationic sur-factant at carbon paste electrode as a sensitive sensor for study and detection of folic acid, Measurement 77 (2016) 257-264. https://doi.org/10.1016/j.measurement.2015.09.009

A. Kumaravel, M. Chandrasekaran, Nanosilver/surfactant modified glassy carbon electrode for the sensing of thiamethoxam, Sensors and Actuators B 174 (2012) 380-388. https://doi.org/10.1016/j.snb.2012.08.054

V.G. Sree, J.I. Sohn, H. Im, Pre-Anodized Graphite Pencil Electrode Coated with a Poly(Thio-nine) Film for Simultaneous Sensing of 3-Nitrophenol and 4-Nitrophenol in Environmental Water Samples, Sensors 22 (2022) 1151. https://doi.org/10.3390/s22031151

G. Tigari, J. G. Manjunatha, A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin, Journal of Science: Advanced Materials and Devices 5 (2020) 56-64. https://doi.org/10.1016/j.jsamd.2019.11.001

I. Kralova, J. Sjöblom, Surfactants Used in Food Industry, Journal of Dispersion Science and Technology 30 (2009) 1363-1383. https://doi.org/10.1080/01932690902735561

A.-C. Hellgren, P. Weissenborn, K. Holmberg, Surfactants in water-borne paints, Progress in Organic Coating 35 (1999) 79-87. https://doi.org/10.1016/S0300-9440(99)00013-2

K. Furuse, Application of Surfactants in Pharmaceuticals, Journal of Japan Oil Chemists’ Society 18 (1969) 530-542. https://doi.org/10.5650/jos1956.18.530

J. K. S. Kumara, B .E. K. Swamy, G. K. Jayaprakash, S. C. Sharma, R. Flores-Moreno, K. Mohanty, S. A. Hariprasad, Effect of TX-100 pretreatment on carbon paste electrode for selective sensing of dopamine in presence of paracetamol, Scientific Reports 12 (2022) 20292. https://doi.org/10.1038/s41598-022-24387-z

G. Kudur Jayaprakash, B.E.K. Swamy, N. Casillas, R. Flores-Moreno, Analytical Fukui and cyclic voltammetric studies on ferrocene modified carbon electrodes and effect of Triton X-100 by immobilization method, Electrochimica Acta 258 (2017) 1025-1034. https://doi.org/10.1016/j.electacta.2017.11.154

K. Deng, C. Li, X. Li, H. Huang, Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide, Journal of Electroanalytical Chemistry 780 (2016) 296-302. https://doi.org/10.1016/j.jelechem.2016.09.040

G. Liu, Y. Tang, D. Sun, Y. Wang, Determination of sunset yellow and tartrazine using silver and poly (L-cysteine) composite film modified glassy carbon electrode, Indian Journal of Chemistry A 55 (2020) 298-303. http://op.niscpr.res.in/index.php/IJCA/article/view/9497

M. M. Charithra, J.G . Manjunatha, Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor, Journal of Electrochemical Science and Engineering 10 (2019) 29-40. https://doi.org/10.5599/jese.717

I. Baranowska, M. Koper, The Preliminary Studies of Electrochemical Behavior of Paracetamol and Its Metabolites on Glassy Carbon Electrode by Voltammetric Methods, Electroanalysis 21 (2009) 1194-1199. https://doi.org/10.1002/elan.200804536

R. N. Hegde, N. P. Shetti, S. T. Nandibewoor, Electro-oxidation and determination of trazodone at multi-walled carbon nanotube-modified glassy carbon electrode, Talanta 79 (2009) 361-368. https://doi.org/10.1016/j.talanta.2009.03.064

S. J. Malode, J. C. Abbar, N. P. Shetti, S .T. Nandibewoor, Voltammetric oxidation and determination of loop diuretic furosemide at a multi-walled carbon nanotubes paste electrode, Electrochimica Acta 60 (2012) 95-101. https://doi.org/10.1016/j.electacta.2011.11.011

H. T. Purushothama, Y. Arthoba Nayaka, Electrochemical study of hydrochlorothiazide on electrochemically pre-treated pencil graphite electrode as a sensor, Sensing and Biosensing Research 16 (2017) 12-18. https://doi.org/10.1016/j.sbsr.2017.09.004

N. S. Prinith, J. G. Manjunatha, Surfactant modified electrochemical sensor for determination of Anthrone - A cyclic voltammetry, Materials Science for Energy Technologies 2 (2019) 408-416. https://doi.org/10.1016/j.mset.2019.05.004

H. T. Purushothama, Y. A. Nayaka, M. M. Vinay, P. Manjunatha, R. O. Yathisha, K. V. Basavarajappa, Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorpromazine, Journal of Science: Advanced Materials and Devices 3 (2018) 161-166. https://doi.org/10.1016/j.jsamd.2018.03.007

M. Kumar, B. E. K. Swamy, S. Reddy, J. K. S. Kumara, W. Zhao, Electrochemical Determination of Hematoxylin by Pretreated ZnO Nanoflakes Modified Carbon Paste Electrode in the Absence and Presence of Eosin Y, Journal of The Electrochemical Society 167 (2020) 087511. https://doi.org/10.1149/1945-7111/ab91c9

J.G. Manjunatha, A novel voltammetric method for the enhanced detection of the food additive tartrazine using an electrochemical sensor, Heliyon 4 (2018) e00986. https://doi.org/10.1016/j.heliyon.2018.e00986

A. A. Cardenas-Riojas, S. L. Calderon-Zavaleta, U. Quiroz-Aguinaga, E. O. López, M. Ponce-Vargas, A.M. Baena-Moncada, Evaluation of an electrochemical sensor based on gold nanoparticles supported on carbon nanofibers for detection of tartrazine dye, Journal of Solid State Electrochemistry 27 (2023) 1969-1982. https://doi.org/10.1007/s10008-023-05438-5

C. Raril, J. G. Manjunatha, Development of sodium dodecyl sulfate based electrochemical sensor for tartrazine determination, Portugaliae Electrochimica Acta 39 (2021) 59-70. http://dx.doi.org/10.4152/pea.202101059

S. Tahtaisleyen, O. Gorduk, Y. Sahin, Electrochemical Determination of Tartrazine Using a Graphene/Poly(L-Phenylalanine) Modified Pencil Graphite Electrode, Analytical Letters 53 (2020) 1683-1703. https://doi.org/10.1080/00032719.2020.1716242

G. Figueira Alves, L. Vinícius de Faria, T. Pedrosa Lisboa, C. Cunha de Souza, B. Luiz Mendes Fernandes, M. Auxiliadora Costa Matos, R. Camargo Matos, A portable and affordable paper electrochemical platform for the simultaneous detection of sunset yellow and tartrazine in food beverages and desserts, Microchemical Journal 181 (2022) 107799. https://doi.org/10.1016/j.microc.2022.107799

T. Gan, J. Sun, S. Cao, F. Gao, Y. Zhang, Y. Yang, One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine, Electrochimica Acta 74 (2012) 151-157. https://doi.org/10.1016/j.electacta.2012.04.039

L. Magerusan, F. Pogacean, M. Coros, C. Socaci, S. Pruneanu, C. Leostean, I.O. Pana, Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection, Electrochimica Acta 283 (2018) 578-589. https://doi.org/10.1016/j.electacta.2018.06.203

F. Pogacean, M. Coros, V. Mirel, L. Magerusan, L. Barbu-Tudoran, A. Vulpoi, R.-I. Stefan-van Staden, S. Pruneanu, Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions: Application to Sunset Yellow voltammetric detection, Microchemical Journal 147 (2019) 112-120. https://doi.org/10.1016/j.microc.2019.03.007

W. Boumya, N. Taoufik, M. Achak, H. Bessbousse, A. Elhalil, N. Barka, Electrochemical sensors and biosensors for the determination of diclofenac in pharmaceutical, biological and water samples, Talanta Open 3 (2021) 100026. https://doi.org/10.1016/j.talo.2020.100026

G. S. Sumanth, B. E. K. Swamy, K. Chetankumar, Facile fabrication of copper oxide modified sensor for determination of Mycophenolate mofetil in biological fluids: A cyclic voltammetric study, Materials Chemistry and Physics 307 (2023) 128118. https://doi.org/10.1016/j.matchemphys.2023.128118

Y. T. Liu, J. Deng, X. L. Xiao, L. Ding, Y. L. Yuan, H. Li, X. T. Li, X. N. Yan, L. L. Wang, Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk, Electrochimica Acta 56 (2011) 4595-4602. https://doi.org/10.1016/j.electacta.2011.02.08

J.G. Manjunatha, A surfactant enhanced graphene paste electrode as an effective electrochemical sensor for the sensitive and simultaneous determination of catechol and resorcinol, Chemical Data Collections 25 (2020) 100331. https://doi.org/10.1016/j.cdc.2019.100331

Y. J. Yang, W. Li, CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of sunset yellow and tartrazine, Russian Journal of Electrochemistry 51 (2015) 218-226. https://doi.org/10.1134/S1023193515030118

T. K. Aparna, R. Sivasubramanian, M. A. Dar, One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid, Journal of Alloys and Compounds 741 (2018) 1130-1141. https://doi.org/10.1016/j.jallcom.2018.01.205

D. Sun, Y. Zhang, F. Wang, K. Wu, J. Chen, Y. Zhou, Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica, Sensors and Actuators B 141 (2009) 641-645. https://doi.org/10.1016/j.snb.2009.07.043

Published

01-04-2025

Issue

Section

Electroanalytical chemistry

How to Cite

Immobilized triton X-100 voltammetric sensor for the simultaneous detection of sunset yellow and tartrazine: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(3), 2589. https://doi.org/10.5599/jese.2589

Similar Articles

1-10 of 208

You may also start an advanced similarity search for this article.