Recent advances in developing modified electrode interface for sensing tartrazine in real samples: a brief review
Review paper
DOI:
https://doi.org/10.5599/jese.2391Keywords:
Azo dyes, electrochemical sensors, modified electrodes, voltammetry techniques, dstuff samples
Abstract
Many businesses, including food, textile, pharmaceuticals, and cosmetics sectors, employ tartrazine or other synthetic dyes. These dyes cause severe health effects if used or consumed frequently. Up to now, researchers have introduced many electrochemical methods for the determination of tartrazine. Among them, voltammetric methods were developed, mostly using effective and selective electrodes with modifiers to accurately sense tartrazine in baking products such as soft drinks, candy, jelly, and other beverages. In this review, we have covered several works on carbon-based, graphite-based and gold electrodes that have been offered for tartrazine detection with good recovery rates and detection limits. These works may aid future research and development toward more accurate tartrazine detection.
Downloads
References
N. Echegaray, N. Guzel, M. Kumar, M. Guzel, A. Hassoun, J.M. Lorenzo, Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging, Food Chemistry 404 (2023) 134453. https://doi.org/10.1016/j.foodchem.2022.134453
S. Dey, B.H. Nagababu, Applications of food color and bio-preservatives in the food and its effect on the human health, Food Chemistry Advances 1 (2022) 100019. https://doi.org/10.1016/j.focha.2022.100019
S. Benkhaya, S. M’rabet, A. El Harfi, Classifications, properties, recent synthesis and applications of azo dyes, Heliyon 6 (2020) e03271. https://doi.org/10.1016/j.heliyon.2020.e03271
S. Benkhaya, S. M’ rabet, A. El Harfi, A review on classifications, recent synthesis and applications of textile dyes, Inorganic Chemistry Communications 115 (2020) 107891. https://doi.org/10.1016/j.inoche.2020.107891
J.-H. Wu, H.-L. Lee, Determination of Sunset yellow and tartrazine in drinks using screen-printed carbon electrodes modified with reduced graphene oxide and NiBTC frameworks, Microchemical Journal 158 (2020) 105133. https://doi.org/10.1016/j.microc.2020.105133
P. Barciela, A. Perez-Vazquez, M.A. Prieto, Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation, Food and Chemical Toxicology 178 (2023) 113935. https://doi.org/10.1016/j.fct.2023.113935
M.B. Kumar, V. Hariprasad, S.D. Joshi, P. Naik, G.K. Jayaprakash, A.S. Pani, D.D. Babu, Exploring the Antimicrobial Potential of Pyrimidine Linked Hydrazinyl Azole Derivatives: Insights from Biological Assays and Molecular Docking Studies, ChemistrySelect 8 (2023) e202301998. https://doi.org/10.1002/slct.202301998
M. Bharath kumar, V. Hariprasad, S.D. Joshi, G.K. Jayaprakash, L. Parashuram, A.S. Pani, D.D. Babu, P. Naik, Bis(azolyl)pyridine-2,6-dicarboxamide Derivatives: Synthesis, Bioassay Analysis and Molecular Docking Studies, ChemistrySelect 8 (2023) e202204927. https://doi.org/10.1002/slct.202204927
S.S. Chaudhari, P.O. Patil, S.B. Bari, Z.G. Khan, A comprehensive exploration of tartrazine detection in food products: Leveraging fluorescence nanomaterials and electrochemical sensors: Recent progress and future trends, Food Chemistry 433 (2024) 137425. https://doi.org/10.1016/j.foodchem.2023.137425
G. Karim-Nezhad, Z. Khorablou, M. Zamani, P. Seyed Dorraji, M. Alamgholiloo, Voltammetric sensor for tartrazine determination in soft drinks using poly (p-amino benzene sulfonic acid)/zinc oxide nanoparticles in carbon paste electrode, Journal of Food and Drug Analysis 25 (2017) 293-301. https://doi.org/10.1016/j.jfda.2016.10.002
X. Liu, L. Huang, K. Qian, Nanomaterial-Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine, Advanced NanoBiomed Research 1 (2021) 2000104. https://doi.org/10.1002/anbr.202000104
B. Li, X. Xie, T. Meng, X. Guo, Q. Li, Y. Yang, H. Jin, C. Jin, X. Meng, H. Pang, Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water, Food Chemistry 440 (2024) 138213. https://doi.org/10.1016/j.foodchem.2023.138213
Z. Ling, L. Yang, W. Zhang, T. Yao, H. Xu, Detection of food contaminants: A review of established rapid analytical techniques and their applications and limitations, Food Safety and Health 2 (2024) 72-95. https://doi.org/10.1002/fsh3.12032
I. Soni, A. Kumari, G.K. Jayaprakash, P. Naik, S. Rajendrachari, Evaluation of the role of ionic liquid as a modifier for carbon paste electrodes in the detection of anthracyclines and purine-pyrimidine-based anticancer agents, Materials Research Express 11 (2024) 012005. https://doi.org/10.1088/2053-1591/ad1bff
F. Karimi, E. Demir, N. Aydogdu, M. Shojaei, M.A. Taher, P.N. Asrami, M. Alizadeh, Y. Ghasemi, S. Cheraghi, Advancement in electrochemical strategies for quantification of Brown HT and Carmoisine (Acid Red 14) From Azo Dyestuff class, Food and Chemical Toxicology 165 (2022) 113075. https://doi.org/10.1016/j.fct.2022.113075
L. Micheletti, B. Coldibeli, C.A.R. Salamanca-Neto, L.C. Almeida, E.R. Sartori, Assessment of the use of boron-doped diamond electrode for highly sensitive voltammetric determination of the azo-dye carmoisine E−122 in food and environmental matrices, Talanta 220 (2020) 121417. https://doi.org/10.1016/j.talanta.2020.121417
M.D. Nanjappa, G.K. Jayaprakash, Some progress in voltammetric methods to detect malachite green in real samples using carbon electrodes, Journal of Electrochemical Science and Engineering 13 (2023) 437-449. https://doi.org/10.5599/jese.1480
Y. Zhao, M. Kumar, M. Freiberger, G. Kudur Jayaprakash, M. Wang, S. Reddy, C. Yang, W. Zhao, Effect of cytosine and adenine on graphene oxide for the sensing of dopamine: Electrochemical and theoretical studies, Microchemical Journal 206 (2024) 111518. https://doi.org/10.1016/j.microc.2024.111518
H. Afsharara, E. Asadian, B. Mostafiz, K. Banan, S.A. Bigdeli, D. Hatamabadi, A. Keshavarz, C.M. Hussain, R. Keçili, F. Ghorbani-Bidkorpeh, Molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPE): A review on sensitive electrochemical sensors for pharmaceutical determinations, TrAC Trends in Analytical Chemistry 160 (2023) 116949. https://doi.org/10.1016/j.trac.2023.116949
S.J. Malode, P. Sharma, M.R. Hasan, N.P. Shetti, R.J. Mascarenhas, Carbon and carbon paste electrodes, Electrochemical Sensors: From Working Electrodes to Functionalization and Miniaturized Devices (2022) 79-114. https://doi.org/10.1016/B978-0-12-823148-7.00004-0
T. Vrabelj, M. Finšgar, Recent Progress in Non-Enzymatic Electroanalytical Detection of Pesticides Based on the Use of Functional Nanomaterials as Electrode Modifiers, Biosensors 12 (2022) 263. https://doi.org/10.3390/bios12050263
X. Sun, Y. Chen, Y. Xie, L. Wang, Y. Wang, X. Hu, Preparation of a chemically stable metal-organic framework and multi-walled carbon nanotube composite as a high-performance electrocatalyst for the detection of lead, Analyst 145 (2020) 1833-1840. https://doi.org/10.1039/C9AN02299F
M. Leulescu, A. Rotaru, I. Pălărie, A. Moanţă, N. Cioateră, M. Popescu, E. Morîntale, M.V. Bubulică, G. Florian, A. Hărăbor, P. Rotaru, Tartrazine: physical, thermal and biophysical properties of the most widely employed synthetic yellow food-colouring azo dye, Journal of Thermal Analysis and Calorimetry 134 (2018) 209-231. https://doi.org/10.1007/s10973-018-7663-3
R. Jain, M. Bhargava, N. Sharma, Electrochemical Studies on a Pharmaceutical Azo Dye: Tartrazine, Industrial & Engineering Chemistry Research 42 (2002) 243-247. https://doi.org/10.1021/ie020228q
S. Tahtaisleyen, O. Gorduk, Y. Sahin, Electrochemical determination of tartrazine using a graphene/poly(L-Phenylalanine) modified pencil graphite electrode, Analytical Letters 53 (2020) 1683-1703. https://doi.org/10.1080/00032719.2020.1716242
Kobun Rovina, S. Siddiquee, S. Md Shaarani, An electrochemical sensor for the determination of tartrazine based on CHIT/GO/MWCNTs/AuNPs composite film modified glassy carbon electrode, Drug and Chemical Toxicology 44(5) (2021) 447-457. https://doi.org/10.1080/01480545.2019.1601210
G. Kudur Jayaprakash, B. E. K. Swamy, N. Casillas, R. Flores-Moreno, Analytical fukui and cyclic voltammetric studies on ferrocene modified carbon electrodes and effect of triton X-100 by immobilization method, Electrochimica Acta 258 (2017) 1025-1034. https://doi.org/10.1016/j.electacta.2017.11.154
G. Kudur Jayaprakash, B. E. Kumara Swamy, H. Nicole González Ramírez, M. Ture Ekanthappa, R. Flores-Moreno, Quantum chemical and electrochemical studies of lysine modified carbon paste electrode surface for sensing dopamine, New Journal Chemistry 42 (2018) 4501-4506. https://doi.org/10.1039/C7NJ04998F
G. K. Jayaprakash, B. E. Kumara Swamy, S. Rajendrachari, S. Sharma, R. Flores-Moreno, Dual descriptor analysis of cetylpyridium modified carbon paste electrodes for ascorbic acid sensing application, Journal of Molecular Liquids 334 (2021) 116348. https://doi.org/10.1016/j.molliq.2021.116348
J. G. Manjunatha, A surfactant enhanced graphene paste electrode as an effective electrochemical sensor for the sensitive and simultaneous determination of catechol and resorcinol, Chemical Data Collections 25 (2020) 100331. https://doi.org/10.1016/j.cdc.2019.100331
N. Hareesha, J. G. Manjunatha, A simple and low-cost poly(DL-phenylalanine) modified carbon sensor for the improved electrochemical analysis of riboflavin, Journal of Science: Advanced Materials and Devices 5(4) (2020) 502-511. https://doi.org/10.1016/j.jsamd.2020.08.005
R. Shasanka, B. E. K. Swamy, Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and their application as dopamine and hydrogen peroxide sensors, Physical Chemistry Research 8(1) (2020) 1-18. https://doi.org/10.22036/pcr.2019.205211.1688
J. G. Manjunatha, A novel poly(glycine) biosensor towards the detection of indigo carmine: A voltammetric study, Journal of Food and Drug Analysis 26 (2018) 292-299. https://doi.org/10.1016/j.jfda.2017.05.002
G. Kudur Jayaprakash, B.E.K. Swamy, J.P.M. Sánchez, X. Li, S.C. Sharma, S.L. Lee, Electrochemical and quantum chemical studies of cetylpyridinium bromide modified carbon electrode interface for sensor applications, Journal of Molecular Liquids 315 (2020) 113719. https://doi.org/10.1016/J.MOLLIQ.2020.113719
C. Raril, J.G. Manjunatha, Sensitive and selective analysis of nigrosine dye at polymer modified electrochemical sensor, Analytical and Bioanalytical Electrochemistry 10(3) (2018) 372-382. http://abechem.ir/No.%203-2018/2018,%2010(3),%20372-382.pdf
R. Shashanka, B. E. Kumara Swamy, Simultaneous electro-generation and electro-deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application, SN Applied Sciences 2 (2020) 956. https://doi.org/10.1007/s42452-020-2785-1
S. M. Ghoreishi, M. Behpour, M. Golestaneh, Simultaneous determination of Sunset yellow and tartrazine in soft drinks using gold nanoparticles carbon paste electrode, Food Chemistry 132 (2012) 637-641. https://doi.org/10.1016/j.foodchem.2011.10.103
Y. Zhang, L. Hu, X. Liu, B. Liu, K. Wu, Highly-sensitive and rapid detection of ponceau 4R and tartrazine in drinks using alumina microfibres-based electrochemical sensor, Food Chemistry 166 (2015) 352-357. https://doi.org/10.1016/j.foodchem.2014.06.048
S. M. Ghoreishi, M. Behpour, M. Golestaneh, Simultaneous voltammetric determination of brilliant blue and tartrazine in real samples at the surface of a multi-walled carbon nanotube paste electrode, Analytical Methods 3 (2011) 2842-2847. https://doi.org/10.1039/C1AY05327B
R. Darabi, M. Shabani-Nooshabadi, H. Karimi-Maleh, A. Gholami, The potential of electrochemistry for one-pot and sensitive analysis of patent blue V, tartrazine, acid violet 7 and ponceau 4R in foodstuffs using IL/Cu-BTC MOF modified sensor, Food Chemistry 368 (2022) 130811. https://doi.org/10.1016/j.foodchem.2021.130811
S. M. Ghoreishi, M. Behpour, M. Golestaneh, Selective voltammetric determination of tartrazine in the presence of red 10B by nanogold-modified carbon paste electrode, Journal of the Chinese Chemical Society 60 (2013) 120-126. https://doi.org/10.1002/jccs.201200143
H. M. Abu Shawish, N. A. Ghalwa, S. M. Saadeh, H. E. Harazeen, Development of novel potentiometric sensors for determination of tatrazine dye concentration in foodstuff products, Food Chemistry 138 (2013) 126-132. https://doi.org/10.1016/j.foodchem.2012.10.048
J. Penagos-Llanos, O. García-Beltrán, J. A. Calderón, J. J. Hurtado-Murillo, E. Nagles, J. J. Hurtado, Simultaneous determination of tartrazine, sunset yellow and allura red in foods using a new cobalt-decorated carbon paste electrode, Journal of Electroanalytical Chemistry 852 (2019) 113517. https://doi.org/10.1016/j.jelechem.2019.113517
J. G. Manjunatha, A novel voltammetric method for the enhanced detection of the food additive tartrazine using an electrochemical sensor, Heliyon 4(11) (2018) e00986. https://doi.org/10.1016/j.heliyon.2018.e00986
E. Nagles, M. Ceroni, J. Hurtado, Simultaneous selection of tartrazine-sunset yellow in food samples using bioxide/carbon paste microcomposite with lanthanum and titanium, Journal of Electrochemical Science and Technology 11(4) (2020) 421-429. https://doi.org/10.33961/jecst.2020.01067
K. Marquez‐Mariño, J. Penagos‐Llanos, O. García‐Beltrán, E. Nagles, J. J. Hurtado, Development of a novel electrochemical sensor based on a carbon paste electrode decorated with Nd2O3 for the simultaneous detection of tartrazine and sunset yellow, Electroanalysis 30 (2018) 2760-2767. https://doi.org/10.1002/elan.201800550
L. Yu, H. Zheng, M. Shi, S. Jing, L. Qu, A novel electrochemical sensor based on poly(diallyl dimethylammonium chloride)-dispersed graphene supported palladium nanoparticles for simultaneous determination of sunset yellow and tartrazine in soft drinks, Food Analytical Methods 10 (2017) 200-209. https://doi.org/10.1007/s12161-016-0569-4
M. M. Moarefdoust, S. Jahani, M. Moradalizadeh, M. M. Motaghi, M. M. Foroughi, An electrochemical sensor based on hierarchical nickel oxide nanostructures doped with indium ions for voltammetric simultaneous determination of sunset yellow and tartrazine colorants in soft drink powders, Analytical Methods 13 (2021) 2396-2404. https://doi.org/10.1039/D1AY00306B
T. Gan, J. Sun, S. Cao, F. Gao, Y. Zhang, Y. Yang, One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of Sunset yellow and tartrazine, Electrochimica Acta 74 (2012) 151-157. https://doi.org/10.1016/j.electacta.2012.04.039
L. Gimadutdinova, G. Ziyatdinova, R. Davletshin, Selective voltammetric sensor for the simultaneous quantification of tartrazine and brilliant blue FCF, Sensors 23 (2013) 1094. https://doi.org/10.3390/s23031094
P. S. Dorraji, F. Jalali, Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of Sunset yellow and tartrazine, Food Chemistry 227 (2017) 73-77. https://doi.org/10.1016/j.foodchem.2017.01.071
W. Zhang, T. Liu, X. Zheng, W. Huang, C. Wan, Surface-enhanced oxidation and detection of Sunset yellow and tartrazine using multi-walled carbon nanotubes film-modified electrode, Colloids Surface B: Biointerfaces 74(1) (2009) 28-31. https://doi.org/10.1016/j.colsurfb.2009.06.016
X. Yang, H. Qin, M. Gao, H. Zhang, Simultaneous detection of ponceat 4R and tartrazine in food using adsorptive stripping voltammetry on an acetylene black nanoparticle-modified electrode, Journal of the Science of Food and Agriculture 91 (2011) 2821-2825. https://doi.org/10.1002/jsfa.4527
J. Li, M. Liu, J. Jiang, B. Liu, H. Tong, Z. Xu, C. Yang, D. Qian, Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow, Sensors and Actuators B: Chemistry 288 (2019) 552-563. https://doi.org/10.1016/j.snb.2019.03.028
M. Wang, J. Zhao, Facile synthesis of Au supported on ionic liquid functionalized reduced graphene oxide for simultaneous determination of Sunset yellow and Tartrazine in drinks Sensors and Actuators B: Chemistry 216 (2015) 578-585. https://doi.org/10.1016/j.snb.2015.04.053
N. Nuñez-Dallos, M. A. Macías, O. García-Beltrán, J. A. Calderón, E. Nagles, J. Hurtado, Voltammetric determination of amaranth and tartrazine with a new double-stranded copper(I) helicate-single walled carbon nanotube modified screen-printed electrode, Journal of Electroanalytical Chemistry 822 (2018) 95-104. https://doi.org/10.1016/j.jelechem.2018.05.017
M. R. Majidi, R. Fadakar Bajeh Baj, A. Naseri, Carbon nanotube-ionic liquid (CNT-IL) nanocomposite modified sol-gel derived carbon-ceramic electrode for simultaneous determination of Sunset yellow and tartrazine in food samples, Food Analytical Methods 6 (2013) 1388-1397. https://doi.org/10.1007/s12161-012-9556-6
M. R. Majidi, M. H. Pournaghi-Azar, R. Fadakar Bajeh Baj, A. Naseri, Formation of graphene nanoplatelet-like structures on carbon-ceramic electrode surface: application for simultaneous determination of sunset yellow and tartrazine in some food samples, Ionics 21 (2015) 863-875. https://doi.org/10.1007/s11581-014-1223-z
O. I. Lipskikh, E. I. Korotkova, J. Barek, V. Vyskocil, M. Saqib, E. P. Khristunova, Simultaneous voltammetric determination of brilliant blue FCF and tartrazine for food quality control, Talanta 218 (2020) 121136. https://doi.org/10.1016/j.talanta.2020.121136
N. Yu. Stozhko, E. I. Khamzina, M. A. Bukharinova, A. V. Tarasov, Electrochemical sensor based on carbon paper modified with graphite powder for sensitive determination of Sunset yellow and tartrazine in drinks, Sensors 22 (2022) 4092. https://doi.org/10.3390/s22114092
H.L. Andersen, L. Djuandhi, U. Mittal, N. Sharma, Strategies for the Analysis of Graphite Electrode Function, Advanced Energy Materials 11 (2021) 2102693. https://doi.org/10.1002/aenm.202102693
D. Bellido-Milla, L.M. Cubillana-Aguilera, M. El Kaoutit, M.P. Hernández-Artiga, J.L. Hidalgo-Hidalgo De Cisneros, I. Naranjo-Rodríguez, J.M. Palacios-Santander, Recent advances in graphite powder-based electrodes, Analytical and Bioanalytical Chemistry 405 (2013) 3525-3539. https://doi.org/10.1007/S00216-013-6816-2
J. Zhang, X. Wang, S. Zhang, W. Wang, M. Hojo, Z. Chen, An electrochemical sensor for simultaneous determination of poceau 4R and tartrazine based on an ionic liquid modified expanded graphite paste electrode, Journal of The Electrochemical Society 161 (2014) H453-H457. https://doi.org/10.1149/2.0271409jes
Y. Z. Song, J. M. Xu, J. S. Lv, H. Zhong, Y. Ye, J. M. Xie, Electrochemical reduction of tartrazine at multi-walled carbon nanotube-modified pyrolytic graphite electrode, Russian Journal of Physical Chemistry A 86 (2012) 303-310. https://doi.org/10.1134/S0036024412020306
L. F. De Lima, A. L. Ferreira, C. C. Maciel, M. Ferreira, W. R. De Araujo, Disposable and low-cost electrochemical sensor based on the colorless nail polish and graphite composite material for tartrazine detection, Talanta 227 (2021) 122200. https://doi.org/10.1016/j.talanta.2021.122200
R. Kobun, S. Siddiquee, S. M. D. Shaarani, Sensitive determination of tartrazine (E 102) based on chitosan/nanoparticles/MWCNTs modified gold electrode in food and beverage products, Transactions on Science and Technology 3 (2016) 176-180. https://tost.unise.org/pdfs/vol3/no1_2/31-2_176_180.pdf
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.