Theoretical and electrochemical analysis of L-serine modified graphite paste electrode for dopamine sensing applications in real samples

Original scientific paper

Authors

  • Revanappa Santhosh Kumar Department of Chemistry, University B.D.T. College of Engineering, Visvesvaraya Technological University, Davangere - 577004, Karnataka, India
  • Gururaj Kudur Jayaprakash Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Himachal Pradesh, 173229, India and Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, 560064, India https://orcid.org/0000-0003-0681-7815
  • Siddalinganahalli Manjappa Department of Chemistry, University B.D.T. College of Engineering, Visvesvaraya Technological University, Davangere - 577004, Karnataka, India
  • Mohan Kumar Department of Chemistry, PES Institute of Technology and Management, Sagar Road, Guddada Arakere, Kotegangoor, 577204, Shivamogga, India https://orcid.org/0000-0003-1986-6384
  • Avvaru Praveen Kumar Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia https://orcid.org/0000-0001-5012-0666

DOI:

https://doi.org/10.5599/jese.1390

Keywords:

Amino acid, redox reaction, quantum chemical modelling, voltammetry, sensor, dopamine
Graphical Abstract

Abstract

In this study, the carbon paste electrode (CPE) was modified by grinding L-serine in a pestle and mortar. L-serine (L-s) was shown to be an effective electrocatalyst at the modified CPE (MCPE) interface for detecting dopamine (DA). L-sMCPE showed excellent activity to detect DA in commercial injection samples with a recovery range of 98.9 to 100.5 %. Theoretical studies were used to understand the electrocatalysis of L-serine at the atomic level using frontier molecular orbitals (FMO) and analytical Fukui assay. According to theoretical findings, the amine group of L-serine works as an extra oxidation site (reason for enhanced reduction peak DA) and the carboxylic acid group acts as an additional reduction site (reason for enhanced oxidation peak DA) at the L-sMCPE interface.

Downloads

Download data is not yet available.

References

Y. Wang, Y. Zhang, C. Hou, M. Liu, Microchimica Acta 183 (2016) 1145-1152. https://doi.org/10.1007/s00604-016-1742-6

H. X. Zhao, H. Mu, Y.H. Bai, H. Yu, Y.M. Hu, Journal of Pharmaceutical Analysis 1 (2011) 208-212. https://doi.org/10.1016/j.jpha.2011.04.003

A. Hammami, R. Sahli, N. Raouafi, Microchimica Acta 183 (2016) 1137-1144. https://doi.org/10.1007/s00604-015-1739-6

Z. Guo, M. L. Seol, M. S. Kim, J. H. Ahn, Y. K. Choi, J. H. Liu, X. J. Huang, Analyst 138 (2013) 2683-2690. https://doi.org/10.1039/C3AN36669C

M. Wang, L. Bai, L. Zhang, G. Sun, X. Zhang, S. Dong, Analyst 141 (2016) 2447-2453. https://doi.org/10.1039/C6AN00016A

J. X. Liu, S. N. Ding, Journal of Electroanalytical Chemistry 781 (2016) 395-400. https://doi.org/10.1016/j.jelechem.2016.08.027

Y. Li, H. Song, L. Zhang, P. Zuo, B. C. Ye, J. Yao, W. Chen, Biosensors and Bioelectronics 78 (2016) 308-314. https://doi.org/10.1016/j.bios.2015.11.063

E. Alipour, M. R. Majidi, A. Saadatirad, S. Mahdi Golabi, A. M. Alizadeh, Electrochimica Acta. 91 (2013) 36-42. https://doi.org/10.1016/j.electacta.2012.12.079

V. Carrera, E. Sabater, E. Vilanova, M. A Sogorb, Journal of Chromatography B 847 (2007) 88-94. https://doi.org/10.1016/j.jchromb.2006.09.032

B. Kong, A. Zhu, Y. Luo, Y. Tian, Y. Yu, G. Shi, Angewandte Chemie International Edition 50 (2011) 1837-1840. https://doi.org/10.1002/anie.201007071

A. Yildirim, M. Bayindir, Analytical Chemistry 86 (2014) 5508-5512. https://doi.org/10.1021/ac500771q

H.Y. Wang, Y. Sun, B. Tang, Talanta 57 (2002) 899-907. https://doi.org/10.1016/S0039-9140(02)00123-6

G. K. Jayaprakash, B. E. K. Swamy, N. Casillas, R. Flores-Moreno, Electrochimica Acta 258 (2017) 1025-1034. https://doi.org/10.1016/j.electacta.2017.11.154

G. K. Jayaprakash, B. E. K. Swamy, S. Rajendrachari, S. C. Sharma, R. Flores-Moreno, Journal of Molecular Liquids 334 (2021) 116348. https://doi.org/10.1016/j.molliq.2021.116348

R. Shashanka, G. K. Jayaprakash, B. G. Prakashaiah, M. Kumar, B. E. Kumara Swamy, Materials Research Innovations 26(4) (2021) 229-239. https://doi.org/10.1080/14328917.2021.1945795

G. Tigari, J. G. Manjunatha, Journal of Analysis and Testing 3(4) (2019) 331-340. https://doi.org/10.1007/s41664-019-00116-w

N. Hareesha, J. G. Manjunatha, Journal of Science: Advanced Materials and Devices 5(4) (2020) 502-511. https://doi.org/10.1016/j.jsamd.2020.08.005

N. Hareesha, J. G. Manjunatha, C. Raril, G. Tigari, ChemistrySelect 4(15) (2019) 4559-4567. https://doi.org/10.1002/slct.201900794

N. Hareesha, J. G. Manjunatha, Materials Research Innovations 24(6) (2020) 349-362. https://doi.org/10.1080/14328917.2019.1684657

J. G. Manjunatha, Chemical Data Collections 25 (2020) 100331. https://doi.org/10.1016/j.cdc.2019.100331

S. Rajendrachari, B. E. K. Swamy, S. Reddy, D. Chaira, Analytical & Bioanalytical Electrochemistry 5(4) (2013) 455-466. http://abechem.ir/index.php?option=com_content&view=article&id=9&Itemid=8

E. Turunc, I. Gumus, H. Arslan, Materials Chemistry and Physics 243 (2020) 122597. https://doi.org/10.1016/j.matchemphys.2019.122597

R. Shasanka, B. E. K. Swamy, Physical Chemistry Research 8(1) (2020) 1-18. https://dx.doi.org/10.22036/pcr.2019.205211.1688

R. Shashanka, B. E. Kumara Swamy, SN Applied Sciences 2 (2020) 956. https://doi.org/10.1007/s42452-020-2785-1

G. K. Jayaprakash, Chemical Physics Letters 789 (2022) 139295. https://doi.org/10.1016/j.cplett.2021.139295

G. K. Jayaprakash, R. Flores-Moreno, New Journal of Chemistry 42(23) (2018) 18913-18918. https://doi.org/10.1039/C8NJ03679A

Sinapsis developers, http://sinapsis.sourceforge.net (accessed July 20, 2020)

deMon, A software package for density functional theory (DFT) calculations, http://demon-software.com/public_html/index.html (accessed and downloaded February13, 2019)

G. Geudtner, P. Calaminici, J. Carmona‐Espíndola, J. M. del Campo, V. D. Domínguez‐Soria, R. F. Moreno, G. U. Gamboa, A. Goursot, A. M. Köster, J. U. Reveles, T. Mineva, WIREs Computational Molecular Science 2(4) (2012) 548-555. https://doi.org/10.1002/wcms.98

R. Flores-Moreno, J. Melin, J. V. Ortiz, G. Merino, The Journal of Chemical Physics 129(22) (2008) 224105. https://doi.org/10.1063/1.3036926

J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865

J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters 80 (1998) 891. https://doi.org/10.1103/PhysRevLett.80.891

N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Canadian Journal of Chemistry 70 (1992) 560-571. https://doi.org/10.1139/v92-079

R. G. Parr, W. Yang, Journal of the American Chemical Society 106(14) (1984) 4049-4050. https://doi.org/10.1021/ja00326a036

Downloads

Published

04-07-2022

How to Cite

Kumar, R. S. ., Jayaprakash, G. K., Manjappa, S., Kumar, M. ., & Kumar, A. P. (2022). Theoretical and electrochemical analysis of L-serine modified graphite paste electrode for dopamine sensing applications in real samples: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(6), 1243–1250. https://doi.org/10.5599/jese.1390

Issue

Section

Electrochemical Science