Fabrications of electrochemical sensors based on carbon paste electrode for vitamin detection in real samples

Review Paper

  • Vaishnavi Sharma Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Himachal Pradesh, 173229, India https://orcid.org/0000-0002-5176-7848
  • Gururaj Kudur Jayaprakash Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Himachal Pradesh, 173229, India https://orcid.org/0000-0003-0681-7815
Keywords: Water-soluble vitamins, fat-soluble vitamins, redox reactions, voltammetry, modifiers
Graphical Abstract


This review article examines some advancements in electrochemical sensors for vitamin detection in the past few decades. Vitamins are micronutrients found in natural foods essential for maintaining good health. Most vitamins cannot be synthesized by a body and must be obtained externally from natural food. Vitamins make a class of organic chemicals that shortage can cause various ailments and diseases, and consumption can become harmful if it exceeds the usually needed level. Because of these factors, vitamin detection has become highly significant and sparked interest over the past few decades. The electrochemical sensors function on the concept of electro­chemical activity of practically all vitamins. This implies that concentrations of vitamins in the electrolyte may be detected by measuring the amounts of current generated at certain potentials by their oxidation and reduction at the working electrode surface. Voltammetric methods are superior to other methods because they are cheaper and show sharp sensitivity with faster analysis speed. The carbon-based electrodes, in particular carbon paste electrodes (CPE), have significant advantages like easier catalyst incorpo­ration, surface renewability, and expanded potential windows with lower ohmic resistance. This review goes into detail about several electro­chemical sensors involving CPE as the working electrode and its utilization to detect water- and fat-soluble vitamins.


Download data is not yet available.


L. Huang, S. Tian, W. Zhao, K. Liu, J. Guo, Talanta 222 (2021) 121645. https://doi.org/10.1016/j.talanta.2020.121645

J. Oni, P. Westbroek, T. Nyokong, Electroanalysis 14(17) (2002) 1165-1168. https://doi.org/10.1002/1521-4109(200209)14:17%3C1165::AID-ELAN1165%3E3.0.CO;2-S3.

N. M. Muppariqoh, W. T. Wahyuni, B. R. Putra, IOP Conference Series: Earth and Environmental Science 58 (2017) 012050. https://doi.org/10.1088/1755-1315/58/1/012050

P. K. Brahman, R. A. Dar, K. S. Pitre, Sensors and Actuators B: Chemical 177 (2013) 807-812. https://doi.org/10.1016/j.snb.2012.11.073

E. Mehmeti, D. M. Stanković, S. Chaiyo, L. Švorc, K. Kalcher, Microchimica Acta 183 (2016) 1619-1624. https://doi.org/10.1007/s00604-016-1789-4

G. Tigari, J.G. Manjunatha, H. Nagarajappa, N.S. Prinith, J. Electrochem. Sci. Eng. 12(1) (2022) 3-23. https://doi.org/10.5599/jese.1094

P. A. Pushpanjali, J. G. Manjunatha, N.Hareesha, J. Electrochem. Sci. Eng. 11(3) (2021) 161-177. https://doi.org/10.5599/jese.999

B. Ferreira, L. O. Duarte, É. N. Oiye, M. F. M. Ribeiro, J. M. T. Katayama, P. H. B. Oliva, M. F. de Oliveira, J. Electrochem. Sci. Eng. 10(4) (2020) 361-371. https://doi.org/10.5599/jese.849

A. Nezamzadeh-Ejhieh, P. Pouladsaz, Journal of Industrial and Engineering Chemistry 20(4) (2014) 2146-2152. https://doi.org/10.1016/j.jiec.2013.09.044

M. F. Teixeira, G. Marino, E. R. Dockal, É. T. Cavalheiro, Analytica Chimica Acta 508(1) (2004) 79-85. https://doi.org/10.1016/j.aca.2003.11.046

M. F. Teixeira, A. Segnini, F. C. Moraes, L. H. Marcolino-Júnior, O. Fatibello-Filho, É. T. Cavalheiro, J. Braz. Chem. Soc. 14(2) (2003) 316-321. https://doi.org/10.1590/S0103-50532003000200021

F. Khaleghi, A. E. Irai, R. Sadeghi, V. K. Gupta, Y. Wen, Sensors, 16(6) (2016) 747. https://doi.org/10.3390/s16060747

S. Cheraghi, M. A. Taher, H. Karimi‐Maleh, Electroanalysis 28(10) (2016) 2590-2597. https://doi.org/10.1002/elan.201600252

S. Karastogianni, S. Girousi, Analytical Letters 55(3) (2021) 399-410. https://doi.org/10.1080/00032719.2021.1937195

P. Tomčik, C. E. Banks, T. J. Davies, R. G. Compton, Analytical Chemistry 76(1) (2004) 161-165. https://doi.org/10.1021/ac030308j

G. K. Jayaprakash, B. E. K. Swamy, S. Rajendrachari, S. C. Sharma, R. Flores-Moreno, Journal of Molecular Liquids 334 (2021) 116348. https://doi.org/10.1016/j.molliq.2021.116348

A. Baghizadeh, H. Karimi-Maleh, Z. Khoshnama, A. Hassankhan, M. Abbasghorbani, Food Analytical Methods 8 (2015) 549-557. https://doi.org/10.1007/s12161-014-9926-3

S. Gheibi, H. Karimi-Maleh, M. A. Khalilzadeh, H. Bagheri, Journal of Food Science and Technology 52 (2015) 276-284. https://doi.org/10.1007/s13197-013-1026-7

G. Tiris, Y. Khoshnavaz, E. N. Öven, M. Mehmandoust, N. Erk, J. Electrochem. Sci. Eng. 12(1) (2022) https://doi.org/10.5599/jese.1153

G. Tigari, J. G. Manjunatha, D. K. Ravishankar, G. Siddaraju, Methods and Objects of Chemical Analysis 14(4) (2019) 216-223.

X. Lv, J. Zhao, X. Dong, H. Tian, S. Qi, Y. Jiang, Y. Ping, International Journal of Electrochemical Science 12 (2017) 8457-8466. https://doi.org/10.20964/2017.09.23

S. Žabčíková, T. Mikysek, L. Červenka, M. Sýs, Food Technology and Biotechnology 56(3) (2018) 337-343. https://doi.org/10.17113/ftb.

S. Kia, A new Voltametric sensor, based on molecularly imprinted polymer (MIP) for vitamin D3 Detection, in 2019 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 2019, 1-4. https://doi.org/10.1109/BIA48344.2019.8967459

M. Sýs, B. Švecová, I. Švancara, R. Metelka, Food Chemistry 229 (2017) 621-627. https://doi.org/10.1016/j.foodchem.2017.02.068

J. P. Hart, S. A. Wring, I. C. Morgan, Analyst 114(8) (1989) 933-937. https://doi.org/10.1039/AN9891400933

Electrochemical Science