Some progress in developing electrochemical sensors for detection of 2,4-dichlorophenoxyacetic acid based on modified carbon interfaces: a brief review

Review paper

Authors

  • Sinchana Kudur Praveen Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, 560064, India https://orcid.org/0009-0007-1231-6263
  • Gururaj Kudur Jayaprakash Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, 560064, India https://orcid.org/0000-0003-0681-7815
  • Mohamed Abbas Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia https://orcid.org/0000-0002-3141-2900
  • Bhavana Rikhari School of Engineering, Dayananda Sagar University, Bangalore Karnataka, 560068, India https://orcid.org/0000-0001-8826-9941
  • Shankramma Kalikeri Division of Nanoscience and Technology (School of Life Sciences), JSS Academy of Higher Education and Research, Mysuru, Karnataka, India https://orcid.org/0000-0003-1143-5475

DOI:

https://doi.org/10.5599/jese.2028

Keywords:

Herbicide, LOD, sensors, voltammetry, redox reaction
Graphical Abstract

Abstract

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-DPAA) is commonly used in agricultural practices. Unfortunately, it has a high toxicity level and is known to be a carcinogenic substance. Therefore, developing an analytical technique capable of detecting this com­pound is crucial. Electrochemical methods offer a viable solution for the rapid and on-site analysis of 2,4-DPAA residues in real samples. The detection of 2,4-DPAA can be achieved through electrochemical redox electron transfer reactions, making voltammetry an effective approach. Various studies have explored the use of carbon electrodes, such as glassy carbon electrodes (GCE), carbon paste electrodes (CPE), and screen-printed electro­des (SPE), for voltammetric detection of 2,4-DPAA. However, researchers have encountered challenges in detecting 2,4-DPAA using these carbon electrodes. Consequently, modifi­cations have been made to the carbon materials by incorporating chitosan hierarchical porous silica, Fe3O4-polyaniline nanocomposites, silver, manganese oxide nano­particles, alizarin yellow R polymer, hierarchical porous calcium phosphate, and molecularly im­printed polypyrrole with TiO2 nanotubes. In this comprehensive review, we have examined the effectiveness of each modified electrode, considering factors such as the limit of detection, precise linear range, and recovery rate for detecting 2,4-DPAA in real samples.

Downloads

Download data is not yet available.

References

C. J. Stigter, Z. Dawei, L. O. Z. Onyewotu, M. Xurong, Using traditional methods and indigenous technologies for coping with climate variability, Climatic Change 70 (2005) 255-271. https://doi.org/10.1007/s10584-005-5949-5

S. K. Patel, A. Sharma, G. S. Singh, Traditional agricultural practices in India: an approach for environmental sustainability and food security, Energy, Ecology and Environment 5 (2020) 253-271. https://doi.org/10.1007/s40974-020-00158-2

J. L. Dillon, J. R. Anderson, Allocative efficiency, traditional agriculture, and risk, American Journal of Agricultural Economics 53 (1971) 26-32. https://doi.org/10.2307/3180294

K. Rambabu, G. Bharath, A. Avornyo, A. Thanigaivelan, A. Hai, F. Banat, Valorization of date palm leaves for adsorptive remediation of 2,4-dichlorophenoxyacetic acid herbicide polluted agricultural runoff, Environmental Pollution 316 (2) (2023) 120612. https://doi.org/10.1016/j.envpol.2022.120612

K. Rambabu, J. AlYammahi, G. Bharath, A. Thanigaivelan, N. Sivarajasekar, F. Banat, Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide, Chemosphere 282 (2021) 131103. https://doi.org/10.1016/j.chemosphere.2021.131103

C. C. McCready, Movement of growth regulators in plants, New Phytologist 62 (1963) 3-18. https://doi.org/10.1111/j.1469-8137.1963.tb06307.x

D. J. Oakes, W. S. Webster, P. D. C. Brown-Woodman, H. E. Ritchie, A study of the potential for a herbicide formulation containing 2,4-D and picloram to cause male-mediated developmental toxicity in rats, Toxicological Sciences 68 (2002) 200-206. https://doi.org/10.1093/toxsci/68.1.200

B. Bukowska, Toxicity of 2,4-dichlorophenoxyacetic acid-molecular mechanisms, Polish Journal of Environmental Studies 15 (2006) 365-374.

D. H. Garabrant, M. A. Philbert, Review of 2,4-dichlorophenoxyacetic acid (2,4-D) epidemiology and toxicology, Critical Reviews in Toxicology 32 (2002) 233-257. https://doi.org/10.1080/20024091064237

K. Li, J.-Q. Wu, L.-L. Jiang, L.-Z. Shen, J.-Y. Li, Z.-H. He, P. Wei, Z. Lv, M.-F. He, Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos, Chemosphere 171 (2017) 40-48. https://doi.org/10.1016/j.chemosphere.2016.12.032.

N. Kumar, 2,4-D ethyl ester poisoning: A case report, Indian Journal of Critical Care Medicine 23 (2019) 432-433. https://doi.org/10.5005/jp-journals-10071-23240

S. H. Zahm, D. D. Weisenburger, P. A. Babbitt, R. C. Saal, J. B. Vaught, K. P. Cantor, A. Blair, A case-control study of Non-Hodgkin’s lymphoma and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in eastern Nebraska, Epidemiology 1 (1990) 349-356. https://www.jstor.org/stable/25759830

M. A. Baim, H. H. Hill Jr., Determination of 2,4-dichlorophenoxyacetic acid in soils by capillary gas chromatography with ion-mobility detection, Journal of Chromatography A 279 (1983) 631-642. https://doi.org/10.1016/S0021-9673(01)93667-2

M. Mohammadnia, R. Heydari, M. R. Sohrabi, Determination of 2,4-dichlorophenoxyacetic acid in food and water samples using a modified graphene oxide sorbent and high-performance liquid chromatography, Journal of Environmental Science and Health, Part B 55 (2020) 293-300. https://doi.org/10.1080/03601234.2019.1692613

H. S. Rathore, S. K. Saxena, Sequential thin-layer chromatography of 2,4-D and related compounds, Journal of Liquid Chromatography 10 (1987) 3623-3636. https://doi.org/10.1080/01483918708077818

M. D. Beeson, W. J. Driskell, D. B. Barr, Isotope dilution high-performance liquid chromatography/tandem mass spectrometry method for quantifying urinary metabolites of atrazine, malathion, and 2,4-dichlorophenoxyacetic acid, Analytical Chemistry 71 (1999) 3526-3530. https://doi.org/10.1021/ac990130u

B. Goswami, D. Mahant, Fe3O4-Polyaniline nanocomposite for non-enzymatic electrochemical detection of 2,4-dichlorophenoxyacetic acid, ACS Omega 27 (2021) 17239-17246. https://doi.org/10.1021/acsomega.1c00983

T. T. Niguso, T. R. Soreta, E. T. Woldemariam, Electrochemical determination of 2, 4-dichlorophenoxyacetic acid using bismuth film modified screen-printed carbon electrode, South African Journal of Chemistry 71 (2018) 160-165. https://www.scielo.org.za/pdf/sajc/v71/21.pdf

M. Ghalkhani, S. I. Kaya, N. K. Bakirhan, Y. Ozkan, S. A. Ozkan, Application of nanomaterials in development of electrochemical sensors and drug delivery systems for anticancer drugs and cancer biomarkers, Critical Reviews in Analytical Chemistry 52 (2022) 481-503. https://doi.org/10.1080/10408347.2020.1808442

M. Ghalkhani, N. K. Bakirhan, S. A. Ozkan, Combination of efficiency with easiness, speed, and, cheapness in development of sensitive electrochemical sensors, Critical Reviews in Analytical Chemistry 50 (2020) 538-553. https://doi.org/10.1080/10408347.2019.1664281

P. Kumar, I. Soni, G. K. Jayaprakash, R. Flores-Moreno, Studies of monoamine neurotransmitters at nanomolar levels using carbon material electrodes: A Review, Materials 15 (2022) 5782. https://doi.org/10.3390/ma15165782

G. Davis, Electrochemical techniques for the development of amperometric biosensors, Biosensors 1 (1985) 161-178. https://doi.org/10.1016/0265-928X(85)80002-X

A. J. Bard, C. G. Zoski, Voltammetry retrospective, Analytical Chemistry 72 (2000) 346A-352A. https://doi.org/10.1021/ac002791t

Z. Štukovnik, U. Bren, Recent developments in electrochemical-impedimetric biosensors for virus detection, International Journal of Molecular Sciences 23 (2022) 15922. https://doi.org/10.3390/ijms232415922

Z. Zhou, T. Liu, S. Zhu, F. Song, W. Zhang, W. Yang, W. Xu, Synthesis and characterization of sensitive molecularly imprinting electrochemical sensor based on chitosan modified aminoated hierarchical porous silica-supported gold for detection of 2, 4-dichlorophenoxyacetic acid, Microchemical Journal 181 (2022) 107593. https://doi.org/10.1016/j.microc.2022.107593

F. Liu, A. Zhong, Q. Xu, H. Cao, X. Hu, Inhibition of 2,4-dichlorophenoxyacetic acid to catalase immobilized on hierarchical porous calcium phosphate: kinetic aspect and electrochemical biosensor construction, The Journal of Physical Chemistry C 120 (2016) 15966-15975. https://doi.org/10.1021/acs.jpcc.5b12559

H. Shi, G. Zhao, M. Liu, Z. Zhu, A novel photoelectrochemical sensor based on molecularly imprinted polymer modified TiO2 nanotubes and its highly selective detection of 2,4-dichlorophenoxyacetic acid, Electrochemistry Communications 13 (2011) 1404-1407. https://doi.org/10.1016/j.elecom.2011.08.022

S. Fathi, R. Rezaee, A. Maleki, N. Amini, M. Safari, S. M. Lee, Fabrication of a sensitive electrochemical sensor of 2,4-dichlorophenoxyacetic acid herbicide based on synergistic catalysis of silver/manganese oxide nanoparticles and polyalizarin at low potential, Desalination and Water Treatment 229 (2021) 283-290. https://doi.org/10.5004/dwt.2021.27370

A. Wong, M. D. P. T. Sotomayor, Biomimetic sensor based on 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H- porphyrin iron (III) chloride and MWCNT for selective detection of 2,4-D, Sensors and Actuators B: Chemical 181 (2013) 332-339. https://doi.org/10.1016/j.snb.2012.12.095

D. Ozkan, K. Kerman, B. Meric, P. Kara, H. Demirkan, M. Polverejan, T. J. Pinnavaia, M. Ozsoz, Heterostructured fluorohectorite clay as an electrochemical sensor for the detection of 2,4-dichlorophenol and the herbicide 2,4-D, Chemistry of Materials 14 (2002) 1755-1761. https://doi.org/10.1021/cm011529d

F. R. de Andrade, R. A. de Toledo, C. M. P. Vaz, Electroanalytical methodology for the direct determination of 2,4-dichlorophenoxyacetic acid in soil samples using a graphite-polyurethane electrode, International Journal of Electrochemistry 2014 (2014) 308926. https://doi.org/10.1155/2014/308926

K. S. Loh, Y. H. Lee, A. Musa, A. A. Salmah, I. Zamri, Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid, Sensors 8 (2008) 5775-5791. https://doi.org/10.3390/s8095775

P. Skládal, T. Kaláb, A multichannel immunochemical sensor for determination of 2,4-dichlorophenoxyacetic acid, Analytica Chimica Acta 316 (1995) 73-78. https://doi.org/10.1016/0003-2670(95)00342-W

V. Sok, A. Fragoso, Carbon nano-onion peroxidase composite biosensor for electrochemical detection of 2,4-D and 2,4,5-T, Applied Sciences 11 (2021) 6889. https://doi.org/10.3390/app11156889

M. Dequaire, C. Degrand, B. Limoges, An immunomagnetic electrochemical sensor based on a perfluorosulfonate- coated screen-printed electrode for the determination of 2,4- dichloro-phenoxyacetic acid, Analytical Chemistry 71 (1999) 2571-2577. https://doi.org/10.1021/ac990101j

E. H. Duarte, J. Casarin, E. R. Sartori, C. R. T. Tarley, Highly improved simultaneous herbicides determination in water samples by differential pulse voltammetry using boron-doped diamond electrode and solid phase extraction on cross-linked poly(vinylimidazole), Sensors and Actuators B: Chemical 255 (2018) 166-175. https://doi.org/10.1016/j.snb.2017.08.021

J. C. D. Neto, V. B. dos Santos, S. C. B. de Oliveira, W. T. Suarez, J. L. de Oliveira, In situ voltammetric analysis of 2,4-dichlorophenoxyacetic acid in environmental water using a boron doped diamond electrode and an adapted unmanned air vehicle sampling platform, Analytical Methods 14 (2022) 1311-1319. https://doi.org/10.1039/D2AY00050D

A. Prusty, S. Bhand, A capacitive sensor for 2,4-D determination in water based on 2,4-D imprinted polypyrrole coated pencil electrode, Materials Research Express 4 (2017) 035306. https://doi.org/10.1088/2053-1591/aa6386

Downloads

Published

02-10-2023 — Updated on 02-10-2023

How to Cite

Kudur Praveen, S., Jayaprakash, G. K., Abbas, M., Rikhari, B., & Kalikeri, S. (2023). Some progress in developing electrochemical sensors for detection of 2,4-dichlorophenoxyacetic acid based on modified carbon interfaces: a brief review: Review paper. Journal of Electrochemical Science and Engineering, 13(6), 923–936. https://doi.org/10.5599/jese.2028

Issue

Section

Electroanalytical chemistry