Pre/post electron transfer regioselectivity at glycine modified graphene electrode interface for voltammetric sensing applications

Original scientific paper

Authors

  • Gururaj Kudur Jayaprakash Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Himachal Pradesh, 173229, India and Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, 560064, India https://orcid.org/0000-0003-0681-7815
  • Roberto Flores-Moreno Departamento de Química, Universidad Guadalajara,Blvd. Marcelino García Barragán 1421, Guadalajara, Jalisco, C.P. 44430, México https://orcid.org/0000-0001-5060-1363
  • Bahaddurghatta Eshwaraswamy Kumara Swamy Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta -577451, Shimoga, Karnataka, India https://orcid.org/0000-0002-2433-0739
  • Kaustubha Mohanty Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India https://orcid.org/0000-0001-9810-9562
  • Pravesh Dhiman Medical Oncology Cell, Department of Radiotherapy and Oncology, IGMC, Shimla, 171001, Himachal Pradesh, India https://orcid.org/0000-0002-2490-6240

DOI:

https://doi.org/10.5599/jese.1438

Keywords:

Redox reaction, density functional theory, frontier molecular orbitals, Fukui analysis
Graphical Abstract

Abstract

In the last few years, glycine (GL) showed good experimental evidence as an electron transfer (ET) mediator at the carbon (in particular graphene (GR)) interface. However, ET properties of GL modified GR interface are still not known completely. These can be achieved using density functional theory-based models. Modelling of modified carbon electrode interfaces is essential in electroanalytical chemistry to get insights into their electronic and redox properties. Here we have modelled glycine modified graphene interface to find out its interfacial redox ET properties. Conceptual density functional theory concepts like frontier molecular orbital (FMO) theory and analytical Fukui functions were utilized to predict the ET sites on the modified graphene surface. It is shown that at the glycine-modified graphene interface, amine groups act as additional oxidation sites and carboxylic acid groups as additional reduction sites. Therefore, glycine acts as an ET mediator at the graphene-based electrode interface. The obtained results are well supported by previously published experimental reports.

Downloads

Download data is not yet available.

References

I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, J. Wang, Electroanalysis 21(1) (2009) 7-28. https://doi.org/10.1002/elan.200804340

J. Zima, I. Švancara, J. Barek, K. Vytřas, Critical Reviews in Analytical Chemistry 39 (2009) 204-227. https://doi.org/10.1080/10408340903011853

G. Kudur Jayaprakash, B. E. K. Swamy, N. Casillas, R. Flores-Moreno, Electrochimica Acta 258 (2017) 1025-1034. https://doi.org/10.1016/j.electacta.2017.11.154

H. Beitollahi, S. Tajik, M. R. Aflatoonian, A. Makarem, Journal of Electrochemical Science and Engineering 12(1) (2022) 209-217. http://dx.doi.org/10.5599/jese.1230

G. Kudur Jayaprakash, B. E. Kumara Swamy, H. Nicole González Ramírez, M. Tumbre Ekanthappa, R. Flores-Moreno, New Journal of Chemistry 42 (2018) 4501-4506. https://doi.org/10.1039/C7NJ04998F

R. S. Kumar, G. K. Jayaprakash, S. Manjappa, Mo. Kumar, A. P. Kumar, Journal of Electrochemical Science and Engineering (2022). https://doi.org/10.5599/jese.1390

T. Girish, J. G. Manjunatha, P. A. Pushpanjali, N. S. Prinith, D. K. Ravishankar, G. Siddaraju, Journal of Electrochemical Science and Engineering 11(1) (2021) 27-38. https://doi.org/10.5599/jese.934

G. K. Jayaprakash, B. E. Kumara Swamy, S. Rajendrachari, S. Sharma, R. Flores-Moreno, Journal of Molecular Liquids 334 (2021) 116348. https://doi.org/10.1016/j.molliq.2021.116348

K. Harisha, B.E. Kumara Swamy, E.E. Ebenso, Journal of Electroanalytical Chemistry 823 (2018) 730-736. https://doi.org/10.1016/j.jelechem.2018.07.021

O. Gilbert, B.E. Kumara Swamy, U. Chandra, B. Sherigara, Journal of Electroanalytical Chemistry 636 (2009) 80-85. https://doi.org/10.1016/j.jelechem.2009.09.016

S. He, P. He, X. Zhang, X. Zhang, K. Liu, L. Jia, F. Dong, Analytica Chimica Acta 1031 (2018) 75-82. https://doi.org/10.1016/j.aca.2018.06.020

S. Dönmez, F. Arslan, N. Sarı, E. Hasanoglu Özkan, H. Arslan, Biotechnology and Applied Biochemistry 64 (2017) 745-753. https://doi.org/10.1002/bab.1533

S. Dönmez, F. Arslan, N. Sarı, N. Kurnaz Yetim, H. Arslan, Biosensors and Bioelectronics 54 (2014) 146-150. https://doi.org/10.1016/j.bios.2013.10.059

J. G. Manjunatha, Journal of Food and Drug Analysis 26 (2018) 292-299. https://doi.org/10.1016/j.jfda.2017.05.002

J. I. Martínez-Araya, Journal of Mathematical Chemistry 53 (2015) 451-465. https://doi.org/10.1007/s10910-014-0437-7

G. K. Jayaprakash, N. Casillas, P. D. Astudillo-Sánchez, R. Flores-Moreno, The Journal of Physical Chemistry A, 120 (2016) 9101-9108. https://doi.org/10.1021/acs.jpca.6b08810

R. E. Ambrusi, J. M. Arroyave, M. E. Centurión, M. S. Di Nezio, M. F. Pistonesi, A. Juan, M. E. Pronsato, Physica E: Low-dimensional Systems and Nanostructures 114 (2019) 113640. https://doi.org/10.1016/j.physe.2019.113640

J. M. Flores-Álvarez, D. Cortés-Arriagada, J. Reyes-Gómez, Z. Gómez-Sandoval, J.C. Rojas‑Montes, K. Pineda-Urbina, Journal of Electroanalytical Chemistry 888 (2021) 115208. https://doi.org/10.1016/j.jelechem.2021.115208

M. Saghravanian, M. Ebrahimi, Z. Es’haghi and S. Ali Beyramabadi, South African Journal of Chemistry 70 (2017) 29-37. http://dx.doi.org/10.17159/0379-4350/2017/v70a5

Sinapsis developers, http://sinapsis.sourceforge.net (accessed July 20, 2020).

G. Geudtner, P. Calaminici, J. Carmona-Espindola, J. M. Del-Campo, V. D. Dominguez-Soria,

R.-F. Moreno, G. U. Gamboa, A. Goursot, A. M. K¨oster, J. U. Reveles, T. Mineva, J. M. V´asquez-P´erez, A. Vela, B. Zu´n˜inga-Gutierrez, D. R. Salahub, Wiley Interdisciplinary Reviews: Computational Molecular Science 2(4) (2012) 548-555. https://doi.org/10.1002/wcms.98

S.H. Vosko, L. Wilk, M. Nusair, Canadian Journal of Physics 58 (1980) 1200-1211. https://doi.org/10.1139/p80-159

N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Canadian Journal of Chemistry 70 (1992) 560-571. https://doi.org/10.1139/v92-079@cjc-uc-0101

J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865

J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters 80 (1998) 891. https://doi.org/10.1103/PhysRevLett.80.891

R. Flores-Moreno, A. M. Köster, The Journal of Chemical Physics 128 (2008) 134105. https://doi.org/10.1063/1.2842103

R. I. Delgado-Venegas, D. Mejía-Rodríguez, R. Flores-Moreno, P. Calaminici, A. M. Köster, The Journal of Chemical Physics 145 (2016) 224103. https://doi.org/10.1063/1.4971292

J. Villalobos-Castro, B. A. Zúñiga-Gutiérrez, R. Flores-Moreno, Theoretical Chemistry Accounts 140 (2021) 82. https://doi.org/10.1007/s00214-021-02755-8

P. Calaminici, F. Janetzko, A.M. Köster, R. Mejia-Olvera, B. Zuniga-Gutierrez, The Journal of Chemical Physics 126 (2007) 044108. https://doi.org/10.1063/1.2431643

C. Raril, J. G. Manjunatha, Analytical and Bioanalytical Electrochemistry 10(3) (2018)

-382. http://abechem.ir/No.%203-2018/2018,%2010(3),%20372-382.pdf

K. Fukui, T. Yonezawa, C. Nagata, H. Shingu, The Journal of Chemical Physics 22(8) (1954) 1433-1442. https://doi.org/10.1063/1.1740412

K. Fukui, T. Yonezawa, H. Shingu, The Journal of Chemical Physics 20(4) (1952) 722-725. https://doi.org/10.1063/1.1700523

K. Fukui, Science 218 (1982) 747-754. https://www.science.org/doi/abs/10.1126/science.218.4574.747

G. K. Jayaprakash, R. Flores-Moreno, New Journal of Chemistry 42 (2018) 18913-18918. https://doi.org/10.1039/C8NJ03679A

R. G. Parr, Weitao Yang, Journal of the American Chemical Society 106(14) (1984)

-4050. https://doi.org/10.1021/ja00326a036

R. Flores-Moreno, J. Melin, J. V. Ortiz, G. Merino, The Journal of Chemical Physics 129(22) (2008) 224105. https://doi.org/10.1063/1.3036926

Downloads

Published

23-08-2022

How to Cite

Jayaprakash, G. K., Flores-Moreno, R. ., Kumara Swamy, B. E. ., Mohanty, K. ., & Dhiman, P. (2022). Pre/post electron transfer regioselectivity at glycine modified graphene electrode interface for voltammetric sensing applications: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(5), 1001–1008. https://doi.org/10.5599/jese.1438

Issue

Section

Electrochemical Science