Strategy on enhancing ionic conductivity of biocompatible hydroxypropyl methyl cellulose/polyethylene glycol polymer blend electrolyte with TiO2 nanofillers and LiNO3 ionic salt
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2351Keywords:
Impedance spectra, Arrhenius behavior, cationic transference number, electrochemical stability, tensile strengthAbstract
A biocompatible and biodegradable polymer in the fabrication of solid polymer electrolytes for high energy density rechargeable batteries is gaining interest owing to their safety, compatibility and flexibility. In this study, a polymer electrolyte based on hydroxypropyl methylcellulose (HPMC)/polyethylene glycol (PEG) biopolymers, incorporating TiO2 nanofillers and LiNO3 as a lithium source, was fabricated using the solution casting method. Mixed-phase TiO2 nanofillers were synthesized via hydrolysis of titanium tetraisopropoxide. The crystal structure, phase morphology, and electrochemical impedance spectra of the films and nanofillers were investigated. X-ray diffraction analysis confirmed the amorphous nature of the polymer electrolyte and crystalline nature of nanofiller. In addition, it was noted that the amorphous phase of the polymer blend remained unaltered despite the incorporation of TiO2 and LiNO3. Thermogravimetric analysis and differential thermal analysis confirmed that the pure blend exhibited a melting point of around 60°C and complete degradation of around 340 °C, while the blend electrolyte with additives demonstrated thermal stability with a broad melting point. The blend containing 5 wt.% TiO2 fillers and 10 wt.% LiNO3ionic salt exhibited the highest ionic conductivity of 0.213 mS cm-1 at room temperature. The polymer blend electrolyte displayed a narrow electrochemical stability window of 2.85 V, with the highest cationic transfer number of 0.323. The temperature-dependent ionic conductivity of the prepared polymer blend electrolyte followed Arrhenius behaviour, with an activation energy of 0.1 eV. The study examined and reported the effect of aging on the interfacial resistance of polymer blend electrolyte. The mechanical properties of the optimized HPMC/PEG/TiO2/LiNO3 polymer blend electrolyte were investigated and reported. Thus, this research elucidated the role of nanofillers and ionic salt in enhancing the performance of biocompatible polymer electrolytes.
Downloads
References
T. Juqu, S. C. Willenberg, K. Pokpas, N. Ross, Advances in paper-based battery research for biodegradable energy storage, Advanced Sensor and Energy Materials 1 (2022) 100037. https://doi.org/10.1016/j.asems.2022.100037
L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications, Progress in Materials Science 102 (2019) 72-108. https://doi.org/10.1016/j.pmatsci.2018.12.005
E. E. R. Gómez, J. H. M. Hernandez, Obtaining Electrospun Membranes of Chitosan/PVA and TiO2 as a Solid Polymer Electrolyte with Potential Application in Ion Exchange Membranes, Membranes 13 (2023) 862. https://doi.org/10.3390/membranes13110862
R. Borah, F. R. Hughson, J. Johnston, T. Nann, On battery materials and methods, Materials Today Advances 6 (2020) 100046. https://doi.org/10.1016/j.mtadv.2019.100046
N. Takami, M. Sekino, T. Ohsaki, M. Kanda, M. Yamamoto, New thin lithium-ion batteries using a liquid electrolyte with thermal stability, Journal of Power Sources 97-98 (2001) 677-680. https://doi.org/10.1016/S0378-7753(01)00699-1
J. Chattopadhyay, T. S. Pathak, D. M. F. Santos, Applications of Polymer Electrolytes in Lithium-Ion Batteries, Polymers 15 (2023) 3907. https://doi.org/10.3390/polym15193907
W. Ren, C. Ding, X. Fu, Y. Huang, Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives, Energy Storage Materials 34 (2021) 515-535. https://doi.org/10.1016/j.ensm.2020.10.018
J. Castillo, A. Santiago, X. Judez, I. Garbayo, J.A. Coca Clemente, M.C. Morant-Miñana, A. Villaverde, J. A. González-Marcos, H. Zhang, M. Armand, C. Li, Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries, Chemistry of Materials 33 (2021) 8812-8821. https://doi.org/10.1021/acs.chemmater.1c02952
S. Das, A. Ghosh, Symmetric electric double‐layer capacitor containing imidazolium ionic liquid‐based solid polymer electrolyte: Effect of TiO2 and ZnO nanoparticles on electrochemical behavior, Journal of Applied Polymer Science 137 (2020) 48757. https://doi.org/10.1002/app.48757
X. Pan, P. Yang, Y. Guo, K. Zhao, B. Xi, F. Lin, S. Xiong, Electrochemical and Nanomechanical Properties of TiO2 Ceramic Filler Li‐Ion Composite Gel Polymer Electrolytes for Li Metal Batteries, Advanced Materials Interfaces 8 (2021) 2100669. https://doi.org/10.1002/admi.202100669
A. A. Al-Muntaser, R. A. Pashameah, A. E. Tarabiah, E. Alzahrani, S. A. AlSubhi, A. Saeed, A. M. Al-Harthi, R. Alwafi, M. A. Morsi, Structural, morphological, optical, electrical and dielectric features based on nanoceramic Li4Ti5O12 filler reinforced PEO/PVP blend for optoelectronic and energy storage devices, Ceramics International 49 (2023) 18322-18333. https://doi.org/10.1016/j.ceramint.2023.02.204
J. Sugumaran, A. L. Ahmada, N. D. Zaulkiflee, Improvement of ionic conductivity of titanium dioxide incorporated PVDF-HFP/cellulose acetate electrolyte membrane, IOP Conference Series: Materials Science and Engineering 736 (2020) 052025. https://doi.org/10.1088/1757-899X/736/5/052025
H. T. Ahmed, O.G. Abdullah, Preparation and Composition Optimization of PEO:MC Polymer Blend Films to Enhance Electrical Conductivity, Polymers 11 (2019) 853. https://doi.org/10.3390/polym11050853
S. A. Rasaki, C. Liu, C. Lao, Z. Chen, A review of current performance of rare earth metal-doped barium zirconate perovskite: The promising electrode and electrolyte material for the protonic ceramic fuel cells, Progress in Solid State Chemistry 63 (2021) 100325. https://doi.org/10.1016/j.progsolidstchem.2021.100325
A. Jagadeesan, M. Sasikumar, R. Hari Krishna, N. Raja, D. Gopalakrishna, S. Vijayashree, P. Sivakumar, High electrochemical performance of nano TiO2 ceramic filler incorporated PVC-PEMA composite gel polymer electrolyte for Li-ion battery applications, Materials Research Express 6 (2019) 105524. https://doi.org/10.1088/2053-1591/ab3cb8
B. Luo, W. Wang, Q. Wang, W. Ji, G. Yu, Z. Liu, Z. Zhao, X. Wang, S. Wang, J. Zhang, Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes, Chemical Engineering Journal 460 (2023) 141329. https://doi.org/10.1016/j.cej.2023.141329
K. Deshmukh, M. Basheer Ahamed, R. R. Deshmukh, S. K. Khadheer Pasha, P. R. Bhagat, K. Chidambaram, Biopolymer Composites With High Dielectric Performance: Interface Engineering, in: Biopolymer Composites Electronics, Elsevier, 2017, pp. 27-128. https://doi.org/10.1016/B978-0-12-809261-3.00003-6
L. Ma, T. Shi, Z. Zhang, X. Liu, H. Wang, Wettability of HPMC/PEG/CS Thermosensitive Porous Hydrogels, Gels 9 (2023) 667. https://doi.org/10.3390/gels9080667
P. Zarrintaj, M. R. Saeb, S. H. Jafari, M. Mozafari, Application of compatibilized polymer blends in biomedical fields, in: Compatilization of Polymer Blends, Elsevier, 2020, pp. 511-537. https://doi.org/10.1016/B978-0-12-816006-0.00018-9
A. A. Al-Muntaser, R. A. Pashameah, A. Saeed, R. Alwafi, E. Alzahrani, S. A. AlSubhi, A. Y. Yassin, Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications, Journal of Materials Science: Materials in Electronics 34 (2023) 678. https://doi.org/10.1007/s10854-023-10104-7
L. Zhang, J. Lian, L. Wu, Z. Duan, J. Jiang, L. Zhao, Synthesis of a Thin-Layer MnO 2 Nanosheet-Coated Fe 3 O 4 Nanocomposite as a Magnetically Separable Photocatalyst, Langmuir 30 (2014) 7006-7013. https://doi.org/10.1021/la500726v
M. Sasikumar, R. H. Krishna, M. Raja, H. A. Therese, N. T. M. Balakrishnan, P. Raghavan, P. Sivakumar, Titanium dioxide nano-ceramic filler in solid polymer electrolytes: Strategy towards suppressed dendrite formation and enhanced electrochemical performance for safe lithium ion batteries, Journal of Alloys and Compounds 882 (2021) 160709. https://doi.org/10.1016/j.jallcom.2021.160709
C. Li, Y. Huang, C. Chen, X. Feng, Z. Zhang, High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries, Applied Surface Science 563 (2021) 150248. https://doi.org/10.1016/j.apsusc.2021.150248
N. Ramaiah, V. Raja, C. Ramu, Preparation and characterisation of electrolyte filled solid poly (viny¬lidene difluoride-co-hexafluoropropylene) polymer TiO2 membranes for battery application, Ma¬terials Research Innovations 26 (2022) 214-221. https://doi.org/10.1080/14328917.2021.1942406
J. C. Barbosa, R. Gonçalves, C. M. Costa, S. Lanceros-Méndez, Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries, ACS Omega 7 (2022) 14457-14464. https://doi.org/10.1021/acsomega.2c01926
N. Farah, H. M. Ng, A. Numan, C.-W. Liew, N. A. A. Latip, K. Ramesh, S. Ramesh, Solid polymer electrolytes based on poly(vinyl alcohol) incorporated with sodium salt and ionic liquid for electrical double layer capacitor, Materials Science and Engineering: B 251 (2019) 114468. https://doi.org/10.1016/j.mseb.2019.114468
M. Grześkowiak, R. J. Wróbel, J. Grzechulska, J. Przepiórski, Preparation and characterization of titania powders obtained via hydrolysis of titanium tetraisopropoxide, Materials Science-Poland 32 (2014) 71-79. https://doi.org/10.2478/s13536-013-0163-z
S. Mahata, S.S. Mahato, M. M. Nandi, B. Mondal, Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, AIP Conference Proceedings 1461(1) (2012) 225-228. https://doi.org/10.1063/1.4736892
L. Cano-Casanova, A. Amorós-Pérez, M. Ouzzine, M .A. Lillo-Ródenas, M.C. Román-Martínez, One step hydrothermal synthesis of TiO2 with variable HCl concentration: Detailed characterization and photocatalytic activity in propene oxidation, Applied Catalysis B: Environmental 220 (2018) 645-653. https://doi.org/10.1016/j.apcatb.2017.08.060
S. Saravanan, M. Balamurugan, T. Soga, Synthesis of Titanium Dioxide Nanoparticles with Desired Ratio of Anatase and Rutile Phases and the Effect of High Temperature Annealing, Transactions of the Materials Research Society of Japan 43 (2018) 255-261. https://doi.org/10.14723/tmrsj.43.255
D. Kida, O. Gładysz, M. Szulc, J. Zborowski, A. Junka, M. Janeczek, A. Lipińska, A. Skalec, B. Karolewicz, Development and Evaluation of a Polyvinylalcohol -Cellulose Derivative-Based Film with Povidone-Iodine Predicted for Wound Treatment, Polymers 12 (2020) 1271. https://doi.org/10.3390/polym12061271
M. Sahu, V. R. M. Reddy, B. Kim, B. Patro, C. Park, W. K. Kim, P. Sharma, Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications, Materials 15 (2022) 1708. https://doi.org/10.3390/ma15051708
S. E. Bianchi, V .W. Angeli, K. C. B. de Souza, D. dos S. Miron, G. de A. Carvalho, V. dos Santos, R.N . Brandalise, Evaluation of the solubility of the HPMC: PVA blends in biological fluids in vitro, Materials Research 14 (2011) 166-171. https://doi.org/10.1590/S1516-14392011005000033
Ri. Prasanna, Ku. Sankari, Design, evaluation and in vitro - in vivo correlation of glibenclamide buccoadhesive films, International Journal of Pharmaceutical Investigation 2 (2012) 26. https://doi.org/10.4103/2230-973X.96923
S. Abbad, K. Guergouri, S. Gazaout, S. Djebabra, A. Zertal, R. Barille, M. Zaabat, Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route, Journal of Environmental Chemical Engineering 8 (2020) 103718. https://doi.org/10.1016/j.jece.2020.103718
H. T. Ahmed, V. J. Jalal, D. A. Tahir, A. H. Mohamad, O. G. Abdullah, Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films, Results in Physics 15 (2019) 102735. https://doi.org/10.1016/j.rinp.2019.102735
Harshlata, K. Mishra, D.K. Rai, Effect of polymer blending on the electrochemical properties of po¬rous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte, Inter¬na¬tional Journal of Materials Research 114 (2023) 662-670. https://doi.org/10.1515/ijmr-2021-8758
A.K. Chauhan, D. Kumar, K. Mishra, A. Singh, Performance enhancement of Na+ ion conducting porous gel polymer electrolyte using NaAlO2 active filler, Materials Today Communications 26 (2021) 101713. https://doi.org/10.1016/j.mtcomm.2020.101713
S. B. Aziz, E. M. A. Dannoun, M. H. Hamsan, H.O. Ghareeb, M. M. Nofal, W. O. Karim, A. S .F. M. Asnawi, J. M. Hadi, M. F. Z. A. Kadir, A Polymer Blend Electrolyte Based on CS with Enhanced Ion Transport and Electrochemical Properties for Electrical Double Layer Capacitor Applications, Polymers 13 (2021) 930. https://doi.org/10.3390/polym13060930
E. Trevisanello, T. Ates, S. Passerini, F.H. Richter, J. Janek, Influence of the Polymer Structure and its Crystallization on the Interface Resistance in Polymer-LATP and Polymer-LLZO Hybrid Electrolytes, Journal of The Electrochemical Society 169 (2022) 110547. https://doi.org/10.1149/1945-7111/aca125
M. Ravi, K. Kiran Kumar, V. Madhu Mohan, V.V.R. Narasimha Rao, Effect of nano TiO2 filler on the structural and electrical properties of PVP based polymer electrolyte films, Polymer Testing 33 (2014) 152-160. https://doi.org/10.1016/j.polymertesting.2013.12.002
W. Zhai, Y. Zhang, L. Wang, F. Cai, X. Liu, Y. Shi, H. Yang, Study of nano-TiO2 composite polymer electrolyte incorporating ionic liquid PP12O1TFSI for lithium battery, Solid State Ionics 286 (2016) 111-116. https://doi.org/10.1016/j.ssi.2016.01.019
J. Yang, X. J. Meng, M. R. Shen, L. Fang, J. L. Wang, T. Lin, J. L. Sun, J. H. Chu, Hopping conduction and low-frequency dielectric relaxation in 5 mol% Mn doped (Pb,Sr)TiO3 films, Journal of Applied Physics 104 (2008) 104113. https://doi.org/10.1063/1.3021447
X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li, J. Borovilas, B. Xu, C. Shi, T. Jin, X. Liao, Y. Li, X. He, S. Du, Y. Fu, M. Dontigny, K. Zaghib, Y. Yang, Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte, Nano Energy 60 (2019) 205-212. https://doi.org/10.1016/j.nanoen.2019.03.051
S. A. Ahmed, T. Pareek, S. Dwivedi, M. Badole, S. Kumar, LiSn2(PO4)3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries, Journal of Solid State Electrochemistry 24 (2020) 2407-2417. https://doi.org/10.1007/s10008-020-04783-z
X. Mei, Y. Wu, Y. Gao, Y. Zhu, S.-H. Bo, Y. Guo, A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes, Materials Today Communications 24 (2020) 101004. https://doi.org/10.1016/j.mtcomm.2020.101004
R. Deivanayagam, M. Cheng, M. Wang, V. Vasudevan, T. Foroozan, N. V. Medhekar, R. Shahbazian-Yassar, Composite Polymer Electrolyte for Highly Cyclable Room-Temperature Solid-State Magnesium Batteries, ACS Applied Energy Materials 2 (2019) 7980-7990. https://doi.org/10.1021/acsaem.9b01455
X. Hu, M. Jing, H. Yang, Q. Liu, F. Chen, W. Yuan, L. Kang, D. Li, X. Shen, Enhanced ionic conductivity and lithium dendrite suppression of polymer solid electrolytes by alumina nanorods and interfacial graphite modification, Journal of Colloid and Interface Science 590 (2021) 50-59. https://doi.org/10.1016/j.jcis.2021.01.018
T. Pareek, S. Dwivedi, S.A. Ahmad, M. Badole, S. Kumar, Effect of NASICON-type LiSnZr(PO4)3 ceramic filler on the ionic conductivity and electrochemical behavior of PVDF based composite electrolyte, Journal of Alloys and Compounds 824 (2020) 153991. https://doi.org/10.1016/j.jallcom.2020.153991
B. Liu, Y. Huang, H. Cao, L. Zhao, Y. Huang, A. Song, Y. Lin, X. Li, M. Wang, A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries, Journal of Membrane Science 545 (2018) 140-149. https://doi.org/10.1016/j.memsci.2017.09.077
A. Song, Y. Huang, X. Zhong, H. Cao, B. Liu, Y. Lin, M. Wang, X. Li, Novel lignocellulose based gel polymer electrolyte with higher comprehensive performances for rechargeable lithium-sulfur battery, Journal of Membrane Science 556 (2018) 203-213. https://doi.org/10.1016/j.memsci.2018.04.003
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Science and Engineering Research Board
Grant numbers Science and Engineering Research Board, Department of Science and Technology, Government of India, New Delhi for the Research Project (EEQ/2022/001028).