Design of high-performance electrochemical sensor based on SnS2 nanoplates and ionic liquid-modified carbon paste electrode for determination of hydrazine in water samples

Original scientific paper

Authors

  • Afsaneh Haji Alizadeh Department of Natural Resources, Sirjan Branch, Islamic Azad University, Sirjan, Iran https://orcid.org/0000-0001-5688-1511
  • Samaneh Salemi Najaf Abadi Department of Basic Science, Sirjan Branch, Islamic Azad University, Sirjan, Iran https://orcid.org/0000-0001-9143-061X
  • Abdulhamid Morshidi Nozar Department of Chemical Engineering, Sirjan Branch, Islamic Azad University, Sirjan, Iran

DOI:

https://doi.org/10.5599/jese.2350

Keywords:

Electrochemical sensing, hydrazine, tin disulfide nanoplates, ionic liquid, real water samples
Graphical Abstract

Abstract

Designing effective and accurate analytical techniques to determine hydrazine is essential for preserving the environment. Herein, an electrochemical sensor based on a carbon paste electrode (CPE) modified with SnS2 nanoplates (SnS2NPs) and ionic liquid (IL) was presented for determination of hydrazine in water samples. The SnS2NPs were synthesized using the hydrothermal method and characterized through field emission scanning electron microscope, Fourier transform infrared spectrometer and energy dispersive spectroscopy. The use of cyclic voltammetry in electrochemical investigations has shown that incorporating IL and SnS2NPs in an electrochemical sensor significantly improves its efficiency. These results in a considerable increase in the oxidation peak current and a decrease in the oxidation peak potential of hydrazine compared to an unmodified CPE. The method of differential pulse voltammetry was utilized to accurately measure the quantity of hydrazine. The SnS2NPs/ILCPE showed improved sensing capabilities, resulting in a noticeable sensitivity of 0.0747 µA/µM and a low limit of detection of 0.05 µM for a broad linear range of hydrazine concentration from 0.08 µM to 450.0 µM. In addition, the SnS2NPs/ILCPE sensor was successfully utilized to measure the amount of hydrazine present in water samples, with a recovery range of 96.0 to 104.4 %. The relative standard deviation was found to be lower than 3.6 % (n = 5), indicating that the developed sensor is suitable for accurately determining hydrazine in water samples with high sensitivity.

Downloads

Download data is not yet available.

References

N. S. K. Gowthaman, S. Shankar, S. Abraham John, Ultrasensitive and selective hydrazine determination in water samples using Ag-Cu heterostructures grown indium tin oxide electrode by environmentally benign method, ACS Sustainable Chemistry & Engineering 6(12) (2018) 17302-17313. https://doi.org/10.1021/acssuschemeng.8b04777

N. M. A. K. Jailani, M. Chinnasamy, N. S. K. Gowthaman, Facile one-pot synthesis of CuO nanospheres: Sensitive electrochemical determination of hydrazine in water effluents, Journal of Electrochemical Science and Engineering 12(3) (2022) 439-449. https://doi.org/10.5599/jese.1207

C. Wang, L. Zhang, Z. Guo, J. Xu, H. Wang, K. Zhai, X. Zhuo, A novel hydrazine electrochemical sensor based on the high specific surface area graphene, Microchimica Acta 169 (2010) 1-6. https://doi.org/10.1007/s00604-010-0304-6

J. Deng, S. Deng, Y. Liu, Highly sensitive electrochemical sensing platform for hydrazine detection, International Journal Electrochemical Science 13 (2018) 3566-3574. https://doi.org/10.20964/2018.04.38

S. Garrod, M. E. Bollard, A. W. Nicholls, S. C. Connor, J. Connelly, J. K. Nicholson, E. Holmes, Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat, Chemical Research in Toxicology 18 (2005) 115-122. https://doi.org/10.1021/tx0498915

L. Cui, Z. Peng, C. Ji, J. Huang, D. Huang, J. Ma, S. Zhang, X. Qian, Y. Xu, Hydrazine detection in the gas state and aqueous solution based on the Gabriel mechanism and its imaging in living cells, Chemical Communications 50 (12) (2014) 1485-1487. https://doi.org/10.1039/C3CC48304E

S. Dutta, C. Ray, S. Mallick, S. Sarkar, A. Roy, T. Pal, Au@ Pd core–shell nanoparticles-decorated reduced graphene oxide: a highly sensitive and selective platform for electrochemical detection of hydrazine, RSC Advances 5 (64) (2015) 51690-51700. https://doi.org/10.1039/C5RA04817F

P. B. Deroco, I. G. Melo, L. S. R. Silva, K. I. B. Eguliuz, G. L. Salazar-Banda, O. Fatibello-Filho, Carbon black supported Au–Pd core-shell nanoparticles within a dihexadecylphosphate film for the development of hydrazine electrochemical sensor, Sensors and Actuators B 256 (2018) 535-542. https://doi.org/10.1016/j.snb.2017.10.107

J. Liu, J. Jiang, Y. Dou, F. Zhang, X. Liu, J. Qu, Q. Zhu, A novel chemiluminescent probe for hydrazine detection in water and HeLa cells, Organic & Biomolecular Chemistry 17(29) (2019) 6975-6979. https://doi.org/10.1039/C9OB01407A

J.-A. Oh, J.-H. Park, H.-S. Shin, Sensitive determination of hydrazine in water by gaschromatography–mass spectrometry after derivatization with ortho phthalaldehyde, Analytica Chimica Acta 769 (2013) 79-83. https://doi.org/10.1016/j.aca.2013.01.036

Z. Wang, Y. Zhang, Z. Meng, M. Li, C. Zhang, L. Yang, Y. Yang, X. Xu, S. Wang, Development of a ratiometric fluorescent probe with large Stokes shift and emission wavelength shift for real-time tracking of hydrazine and its multiple applications in environmental analysis and biological imaging, Journal of Hazardous Materials 422 (2022) 126891. https://doi.org/10.1016/j.jhazmat.2021.126891

S. Ayaz, Y. Dilgin, R. Apak, Flow injection amperometric determination of hydrazine at a cupric-neocuproine complex/anionic surfactant modified disposable electrode, Microchemical Journal 159 (2020) 105457. https://doi.org/10.1016/j.microc.2020.105457

A. S. Amosov, N. V. Ul’yanovskii, D. S. Kosyakov, O. A. Shpigun, Simultaneous determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine by high-performance liquid chromatography with pre-and post-column derivatization by 5-nitro-2-furaldehyde, Journal of Analytical Chemistry 73 (2018) 497-503. https://doi.org/10.1134/S1061934818050027

B. Zargar, A. Hatamie, A simple and fast colorimetric method for detection of hydrazine in water samples based on formation of gold nanoparticles as a colorimetric probe, Sensors and Actuators B 182 (2013) 706-710. https://doi.org/10.1016/j.snb.2013.03.036

A. Mahieddine, L. Adnane-Amara, Constructing and electrochemical performance of NiCo-LDHs@ h-Ni NWs core–shell for hydrazine detection in environmental samples. Journal of Electroanalytical Chemistry 930 (2023) 117168. https://doi.org/10.1016/j.jelechem.2023.117168

M. Alsaiari, A. R.Younus, A. Rahim, R. Alsaiari, N. Muhammad, An electrochemical sensing platform of cobalt oxide@SiO2/C mesoporous composite for the selective determination of hydrazine in environmental samples, Microchemical Journal 165 (2021) 106171. https://doi.org/10.1016/j.microc.2021.106171

Z. Meng, B. Liu, M. Li, A sensitive hydrazine electrochemical sensor based on Ag-Ni alloy/reduced graphene oxide composite, International Journal of Electrochemical Science 12(11) (2017) 10269-10278. https://doi.org/10.20964/2017.11.15

N. S. K. Gowthaman, B. Sinduja, S. A. John, Tuning the composition of gold–silver bimetallic nanoparticles for the electrochemical reduction of hydrogen peroxide and nitrobenzene, RSC Advances 6(68) (2016) 63433-63444. https://doi.org/10.1039/C6RA05658J

D. Mohapatra, N. S. K. Gowthaman, M. S. Sayed, J.-J. Shim, Simultaneous ultrasensitive determination of dihydroxybenzene isomers using GC electrodes modified with nitrogen-doped carbon nano-onions, Sensors and Actuators B 304 (2020) 127325. https://doi.org/10.1016/j.snb.2019.127325

N. S. K. Gowthaman, M. A. Raj, S. A. John, Nitrogen-doped graphene as a robust scaffold for the homogeneous deposition of copper nanostructures: A nonenzymatic disposable glucose sensor, ACS Sustainable Chemistry & Engineering 5(2) (2017) 1648-1658. https://doi.org/10.1021/acssuschemeng.6b02390

M. M. I. Khan, M. A. Yousuf, P. Ahamed, M. Alauddin, N. T. Tonu, Electrochemical Detection of Dihydroxybenzene Isomers at a Pencil Graphite Based Electrode, ACS Omega 7(33) (2022) 29391-29405. https://doi.org/10.1021/acsomega.2c03651

Y. Shao, Y. Zhu, R. Zheng, P. Wang, Z. Zhao, J. An, Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water, Advanced Composites and Hybrid Materials 5(4) (2022) 3104-3116. https://doi.org/10.1007/s42114-022-00562-8

B. J. Ostertag, M. T. Cryan, J. M. Serrano, G. Liu, A.E. Ross, Porous carbon nanofiber-modified carbon fiber microelectrodes for dopamine detection, ACS Applied Nano Materials 5(2) (2022) 2241-2249. https://doi.org/10.1021/acsanm.1c03933

J. Zoubir, N. Bougdour, W. El Hayaoui, C. Radaa, A. Idlahcen, A. Assabbane, I. Bakas, Electro-chemical detection of metronidazole using silver nanoparticle-modified carbon paste elec-trode, Electrocatalysis 13(4) (2022) 386-401. https://doi.org/10.1007/s12678-022-00722-w

A. Kasaeinasab, H. A. Mahabadi, S. J. Shahtaheri, F. Faridbod, M. R. Ganjali, F. Mesgari, Carbendazim trace analysis in different samples by using nanostructured modified carbon paste electrode as voltametric sensor, PLoS One 18(1) (2023) e0279816. https://doi.org/10.1371/journal.pone.0279816

P.-S. Ganesh, A.B.Teradale, S.-Y. Kim, H.-U. Ko, E.E. Ebenso, Electrochemical sensing of anti-inflammatory drug mesalazine in pharmaceutical samples at polymerized-congo red modified carbon paste electrode, Chemical Physics Letters 806 (2022) 140043. https://doi.org/10.1016/j.cplett.2022.140043

Z. Deng, Z. Wu, M. Alizadeh, H. Zhang, Y. Chen, C. Karaman, Electrochemical monitoring of 4-chlorophenol as a water pollutant via carbon paste electrode amplified with Fe3O4 incorporated cellulose nanofibers (CNF), Environmental Research 219 (2023) 114995. https://doi.org/10.1016/j.envres.2022.114995

T. S. S. Kumar Naik, B. E. Kumara Swamy, S. Singh, J. Singh, E. I. Naik, G. K. Jayaprakash, P. C. Ramamurthy, Fabrication and theoretical analysis of sodium alpha-olefin sulfonate-anchored carbon paste electrode for the simultaneous detection of adrenaline and paracetamol, Journal of Applied Electrochemistry 52(41) (2022) 697-708. https://doi.org/10.1007/s10800-021-01663-w

M. Yu, L. Wu, J. Miao, W. Wei, A. Liu, S. Liu, Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol, Analytica Chimica Acta 1080 (2019) 84-94. https://doi.org/10.1016/j.aca.2019.06.053

J. Ai, X. Wang, Y. Zhang, H. Hu, H. Zhou, Y. Duan, D. Wang, H. Wang, H. Du, Y. Yang, A sen-sitive electrochemical sensor for nitenpyram detection based on CeO2/MWCNTs nano¬com-posite, Applied Physics A 128(9) (2022) 831. https://doi.org/10.1007/s00339-022-05952-9

N. F. Atta, A. Galal, A. R. M. El-Gohary, Gold-doped nano-perovskite-decorated carbon nanotubes for electrochemical sensing of hazardous hydrazine with application in wastewater sample, Sensors and Actuators B 327 (2021) 128879. https://doi.org/10.1016/j.snb.2020.128879

B. Patella, C. Sunseri, R. Inguanta, Nanostructured based electrochemical sensors, Journal of Nanoscience and Nanotechnology 19(6) (2019) 3459-3470. https://doi.org/10.1166/jnn.2019.16110

M. Imran, S. Ahmed, A. Z. Abdullah, J. Hakami, A. A. Chaudhary, H. A. Rudayni, S.-U.-D. Khan, A. Khan, N. S. Basher, Nanostructured material‐based optical and electrochemical detection of amoxicillin antibiotic, Luminescence 38(7) (2023) 1064-1086. https://doi.org/10.1002/bio.4408

R. Ali, M. M. El-Wekil, Construction of MIP/Bi2S3 nanoparticles/rGO nanoprobe for simultaneous electrochemical determination of amoxicillin and clavulanic acid, Journal of Alloys and Compounds 962 (2023) 171180. https://doi.org/10.1016/j.jallcom.2023.171180

N. S. K. Gowthaman, D. Mohapatra, P. Arul, W. S. Chang, Ultrasonic-assisted decoration of AuNPs on carbon nano-onions as robust electrochemical scaffold for sensing of carcinogenic hydrazine in industrial effluents, Journal of Industrial and Engineering Chemistry 117 (2023) 227-237. https://doi.org/10.1016/j.jiec.2022.10.009

N. S. K. Gowthaman, H. N. Lim, V. Balakumar, S. Shankar, Ultrasonic synthesis of CeO2@organic dye nanohybrid: environmentally benign rabid electrochemical sensing platform for carcinogenic pollutant in water samples, Ultrasonics Sonochemistry 61 (2020) 104828. https://doi.org/10.1016/j.ultsonch.2019.104828

E. Narayanamoorthi, P. Arul, N. S. K. Gowthaman, S. A. John, Morphology dependent electrocatalytic activity of copper based porous organic frameworks via diverse chain length of linkers and counterions of metal precursor, Electrochimica Acta 409 (2022) 139994. https://doi.org/10.1016/j.electacta.2022.139994

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today 20(3) (2017) 116-130. https://doi.org/10.1016/j.mattod.2016.10.002

S. Velmurugan, S. Palanisamy, T. C.-K. Yang, Single-crystalline SnS2 nano-hexagons based non-enzymatic electrochemical sensor for detection of carcinogenic nitrite in food samples, Sensors and Actuators B 316 (2020) 128106. https://doi.org/10.1016/j.snb.2020.128106

B. D. Bhat, Tuning the magnetic and electronic properties of monolayer SnS2 by 3d transition metal doping: A DFT study, Materials Today Communications 33 (2022) 104626. https://doi.org/10.1016/j.mtcomm.2022.104626

Q. Sun, D. Li, L. Dai, Z. Liang, L. Ci, Structural engineering of SnS2 encapsulated in carbon nanoboxes for high‐performance sodium/potassium‐ion batteries anodes, Small 16(45) (2020) 2005023. https://doi.org/10.1002/smll.202005023

D. Wang, X. Yan, C. Zhou, J. Wang, X. Yuan, H. Jiang, Y. Zhu, X. Cheng, R. Li, A free‐standing electrode based on 2D SnS2 nanoplates@3D carbon foam for high performance supercapacitors, International Journal of Energy Research 44(11) (2020) 8542-8554. https://doi.org/10.1002/er.5540

P. Bharathi, P. S. Harish, M. Shimomura, M. K. Mohan, J. Archana, M. Navaneethan, Controlled growth and fabrication of edge enriched SnS2 nanostructures for room temperature NO2 gas sensor applications, Materials Letters 335 (2023) 133691. https://doi.org/10.1016/j.matlet.2022.133691

L. Wang, Y. Wang, A. Zhang, Z. Wu, Fabrication of Ag/SnS2/g-C3N4 Z-scheme-type hetero-junction photocatalysts with enhanced LED light-driven photoactivity, Inorganic Chemistry Communications 156 (2023) 111144. https://doi.org/10.1016/j.inoche.2023.111144

R. Shanmugam, J. Ganesamurthi, T.-W. Chen, S.-M. Chen, K. Alagumalai, J. Alkahtani, M. S. Alwahibi, M. H. Ajmal Ali, Synergetic combination of nano hexagons SnS2/Sulfur substituted graphitic carbon nitride: Evaluation of electrochemical sensor for the agricultural pollutant in environmental samples, Chemical Engineering Journal 431(Part 2) (2022) 134174. https://doi.org/10.1016/j.cej.2021.134174

R. Shanmugam, S. Manavalan, S.-M. Chen, M. Keerthi, L.-H. Lin, Methyl parathion detection using SnS2/N, S–Co-doped reduced graphene oxide nanocomposite, ACS Sustainable Chemistry & Engineering 8(30) (2020) 11194-11203. https://doi.org/10.1021/acssuschemeng.0c02528

B. Yang, H. Li, C. Nong, X. Li, S. Feng, A novel electrochemical immunosensor based on SnS2/NiCo metal-organic frameworks loaded with gold nanoparticles for cortisol detection, Analytical Biochemistry 669 (2023) 115117. https://doi.org/10.1016/j.ab.2023.115117

M. Zhou, Y. Pu, Q. Wu, P. Wang, T. Liu, M. Zhang, 2D hexagonal SnS2 nanoplates as novel co-reaction accelerator for construction of ultrasensitive g-C3N4-based electrochemiluminescent biosensor, Sensors and Actuators B: Chemical 319 (2020) 128298. https://doi.org/10.1016/j.snb.2020.128298

R. Rama, S. Meenakshi, K. Pandian, S. C. B. Gopinath, Room temperature ionic liquids-based electrochemical sensors: an overview on paracetamol detection, Critical Reviews in Analytical Chemistry 52(6) (2022) 1422-1431. https://doi.org/10.1080/10408347.2021.1882834

T. A. Silva, A. Wong, O. Fatibello-Filho, Electrochemical sensor based on ionic liquid and carbon black for voltammetric determination of Allura red colorant at nanomolar levels in soft drink powders, Talanta 209 (2020) 120588. https://doi.org/10.1016/j.talanta.2019.120588

S. Šekuljica, V. Guzsvány, J. Anojčić, T. Hegedűs, M. Mikov, K. Kalcher, Imidazolium-based ionic liquids as modifiers of carbon paste electrodes for trace-level voltammetric determination of dopamine in pharmaceutical preparations, Journal of Molecular Liquids 306 (2020) 112900. https://doi.org/10.1016/j.molliq.2020.112900

N. Alahmadi, H. S. Alhasan, H. Gomaa, A. A. Abdelwahab, M. Y. Emran, Electrochemical sensor design based on CuO nanosheets/Cellulose derivative nanocomposite for hydrazine monitoring in environmental samples, Microchemical Journal 183 (2022) 107909. https://doi.org/10.1016/j.microc.2022.107909

Y. Dong, Z. Yang, Q. Sheng, J. Zheng, Solvothermal synthesis of Ag@Fe3O4 nanosphere and its application as hydrazine sensor, Colloids and Surfaces A 538 (2018) 371-377. https://doi.org/10.1016/j.colsurfa.2017.11.024

Downloads

Published

30-09-2024

How to Cite

Haji Alizadeh, A., Salemi Najaf Abadi, S., & Morshidi Nozar, A. (2024). Design of high-performance electrochemical sensor based on SnS2 nanoplates and ionic liquid-modified carbon paste electrode for determination of hydrazine in water samples: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(5), 617–629. https://doi.org/10.5599/jese.2350

Issue

Section

Electroanalytical chemistry