A sensitive and simple method for voltammetric analysis of Sudan I as an azo dye in food samples using a Fe3O4-ZIF-67/ionic liquid modified carbon paste electrode
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1217Keywords:
Electrochemical method, Fe3O4-ZIF-67 nanocomposite, ionic liquid
Abstract
The present study developed a facile and fast electrochemical approach to sensitively analyze Sudan I using Fe3O4-ZIF-67 nanocomposite plus ionic liquid (IL). The carbon paste electrode (CPE) modified with Fe3O4-ZIF-67/IL exhibited an excellent electrochemical sensing performance to Sudan I. Compared with the unmodified CPE, Fe3O4-ZIF-67/ILCPE could significantly increase the peak current of Sudan I oxidation and decrease the oxidation overpotentials. Under the best experimental conditions, the sensor using differential pulse voltammetry (DPV) technique responded to Sudan I linearly (0.5 - 560 μM) with a low limit of detection (LOD) of 0.1 μM. Additionally, the applicability and effectiveness of our proposed method in sensing Sudan I present in food samples was confirmed by acceptable recovery rate (96.0 - 103.6 %).
Downloads
References
X. Nie, Y. Xie, Q. Wang, H. Wei, C. Xie, Y. Li, B. Wang, Y. Li, CyTA-Journal of Food 19 (2021) 560-570. https://doi.org/10.1080/19476337.2021.1925746
H. Chen, M. Chen, X. Wang, R. Sun, Polymer Chemistry 5 (2014) 4251-4258. https://doi.org/10.1039/C4PY00120F
Q. Zhou, M. Lei, Y. Wu, S. Li, Y. Tong, Z. Li, M. Liu, L. Guo, C. Chen, Chemosphere 279 (2021) 130584. https://doi.org/10.1016/j.chemosphere.2021.130584
H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Food Chemistry 286 (2019) 191-196. https://doi.org/10.1016/j.foodchem.2019.01.143
X. Ma, M. Chao, Z. Wang, Food Chemistry 138 (2013) 739-744. https://doi.org/10.1016/j.food¬chem.¬2012.11.004
E. Ertaş, H. Özer, C. Alasalvar, Food Chemistry 105 (2007) 756-760. https://doi.org/10.1016/j.foodchem.2007.01.010
M.I. López, I. Ruisánchez, M.P. Callao, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 111 (2013) 237-241. https://doi.org/10.1016/j.saa.2013.04.031
S. Anmei, Z. Qingmei, C. Yuye, W. Yilin, Analytica Chimica Acta 1023 (2018) 115-120. https://doi.org/10.1016/j.aca.2018.03.024
D. Han, M. Yu, D. Knopp, R. Niessner, M. Wu, A. Deng, Journal of Agricultural and Food Chemistry 55 (2007) 6424-6430. https://doi.org/10.1021/jf071005j
E. Mejia, Y. Ding, M.F. Mora, C.D. Garcia, Food Chemistry 102 (2007) 1027-1033. https://doi.org/10.1016/j.foodchem.2006.06.038
X. Li, X. Sun, M. Li, ChemistrySelect 5 (2020) 12777-12784. https://doi.org/10.1002/slct.202003559
M. Heydari, S.M. Ghoreishi, A. Khoobi, Measurement 142 (2019) 105-112. https://doi.org/10.1016/j.measurement.2019.04.058
R. N. Adams, Analytical Chemistry 30 (1958) 1576–1579.
B. J. Sanghavi, A. K. Srivastava, Electrochimica Acta 55 (2010) 8638–8648. https://doi.org/10.1016/j.electacta.2010.07.093
I. G. Svegl, B. Ogorevc, Journal of Analytical Chemistry 367 (2000) 701–706. https://doi.org/10.1007/s002160000465
G. Jeevanandham, K. Vediappan, Z. A. Alothman, T. Altalhi, A. K. Sundramoorthy, Scientific Reports 11 (2021) 1-13. https://doi.org/10.1038/s41598-021-92620-2
M. R. Ganjali, F. Garkani-Nejad, S. Tajik, H. Beitollahi, E. Pourbasheer, B. Larijanii, International Journal of Electrochemical Science 12 (2017) 9972-9982. https://doi.org/10.20964/2017.11.49
Y. Yao, X. Han, X. Yang, J. Zhao, C. Chai, Chinese Journal of Chemistry 39 (2021) 330-336. https://doi.org/10.1002/cjoc.202000398
J. K. Patra, K. H. Baek, Journal of Photochemistry and Photobiology B: Biology 173 (2017) 291–300. https://doi.org/10.1016/j.jphotobiol.2017.05.045
Y. Xie, T. Zhang, Y. Chen, Y. Wang, L. Wang, Talanta 2020, 213 (2020) 120843. https://doi.org/10.1016/j.talanta.2020.120843
B. Sriram, M. Govindasamy, S. F. Wang, R. J. Ramalingam, H. Al-Lohedan, T. Maiyalagan, Ultrasonics Sonochemistry 58 (2019) 104618. https://doi.org/10.1016/j.ultsonch.2019.104618
H. Li, B. Kou, Y. Yuan, Y. Chai, R. Yuan, Biosensors and Bioelectronics 197 (2022) 113758. https://doi.org/10.1016/j.bios.2021.113758
K.S. Park, Z. Ni, A.P. Côté, Proceedings of the National Academy of Sciences 103 (2006) 10186-10191. https://doi.org/10.1073/pnas.0602439103
S.R. Venna, M.A. Carreon, Journal of the American Chemical Society 132 (2009) 76-78. https://doi.org/10.1021/ja909263x
C. Chizallet, S. Lazare, D. Bazer-Bachi, F. Bonnier, V. Lecocq, E. Soyer, A. A. Quoineaud, N. Bats, Journal of the American Chemical Society 132 (2010) 12365-12377. https://doi.org/10.1021/ja907359t
H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J. Caro, Journal of the American Chemical Society 131 (2009) 16000-16001. https://doi.org/10.1021/ja907359t
S. L. Li, Q. Xu, Energy & Environmental Science 6 (2013) 1656-1683. https://doi.org/10.1039/C3EE40507A
M. C. Buzzeo, R. G. Evans, R. G. Compton, ChemPhysChem 5 (2004) 1106-1120. https://doi.org/¬10.1002/cphc.200301017
A. Abo-Hamad, M. A. Alsaadi, M. Hayyan, I. Juneidi, M. A. Hashim, Electrochimica Acta 193 (2016) 321. https://doi.org/10.1016/j.electacta.2016.02.044
M. Shahsavari, S. Tajik, I. Sheikhshoaie, H. Beitollahi, Topics in Catalysis (2021). https://doi.org/10.1007/s11244-021-01471-8
A. J. Bard, L. R. Faulkner Fundamentals and applications. Electrochemical methods (2001) pp 580–632.
E. Prabakaran, K. Pandian, Food Chemistry 166 (2015) 198-205. https://doi.org/10.1016/j.foodchem.¬2014.05.143
Q. Ye, X. Chen, J. Yang, D. Wu, J. Ma, Y. Kong, Food Chemistry 287 (2019) 375-381. https://doi.org/10.1016/j.foodchem.2019.02.108
Z. Mo, Y. Zhang, F. Zhao, F. Xiao, G. Guo, B. Zeng, Food Chemistry 121 (2010) 233-237. https://doi.org/10.1016/j.foodchem.2009.11.077
V. Vinothkumar, A. Sangili, S. M. Chen, T. W. Chen, M. Abinaya, V. Sethupathi, International Journal of Electrochemical Science 15 (2020) 2414-2429. https://doi.org/10.20964/2020.03.08
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.