A brief review on recent high-performance platforms for electrochemical sensing of azo dye Allura Red (E129): food safety and pharmaceutical applications
Review paper
DOI:
https://doi.org/10.5599/jese.2517Keywords:
Electroanalysis, sensors, synthetic dyes, food analysis, food control, pharmaceutical analysis, drug analysisAbstract
Artificial dyes are increasingly widespread, especially in foodstuffs and pharmaceutical products as an industry marketing strategy to attract consumers. Consumption of the synthetic azo dye Allura Red (AR) has potential risks to human health and can cause several adverse health effects such as genotoxicity, carcinogenicity, attention deficit hyperactivity disorder, allergic and asthmatic diseases in children. The limited number of electrochemical sensing platforms for AR successfully applied for safety assessment of foods, beverages, and drug formulations testifies that the food and pharmaceutical matrices present significant analytical challenges and there is still a need to amplify the analytical performances of these systems. The authors intensively reviewed recent papers (mainly since 2019) emphasizing electrode engineering, strategies for electrochemical signal amplification, and analytical applications in food and drug control. A critical discussion on the latest interesting innovations and perspectives of the most promising electrochemical tools for AR electroanalysis is presented. The challenges and limitations in the design of electrochemical sensors for AR analysis are also discussed with a view to providing new directions for future research and development of sustainable sensing devices, paving the way for advancements in this field.
Downloads
References
M. Silva, F. Reboredo, F. Lidon, Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products and Health Side Effects, Foods 11 (2022) 379. https://doi.org/10.3390/foods11030379
S. Dey, B. Nagababu, Applications of food color and bio-preservatives in the food and its effect on the human health, Food Chemistry Advances 1 (2022) 100019. https://doi.org/10.1016/j.focha.2022.100019
R. Zaeimbashi, A. Mostafavi, T. Shamspur, Synthesis of vanadium oxide nanoplates for electrochemical detection of amaranth in food samples, Journal of Electrochemical Science and Engineering 12 (2022) 1153-1163. https://doi.org/10.5599/jese.1394
A. Ammar, M.-A. Atwa, D. Faress, A. Ali, Safety of Some Synthetic Food Colours: Review, Turkish Journal of Agriculture – Food Science and Technology 9 (2021) 2347-2354. https://doi.org/10.24925/turjaf.v9i12.2347-2354.4355
T. Dodevska, D. Hadzhiev, I. Shterev, Recent progress in electrochemical detection of amaranth in food samples: A brief review, Bulgarian Chemical Communications 56 Special Issue D (2024) 38-42. https://doi.org/10.34049/bcc.56.D.S1P7
S. Z. Mohammadi, Y.-M. Baghelani, F. Mousazadeh, S. Rahimi, M. Mohammad-Hassani, Electrochemical determination of amaranth in food samples by using modified electrode, Journal of Electrochemical Science and Engineering 12 (2022) 1165-1177. https://doi.org/10.5599/jese.1531
S. Z. Mohammadi, F. Mousazadeh, A sensitive sensor based on graphitic carbon nitride/1-butyl-3-methylimidazolium hexafluorophosphate ionic liquids modified carbon paste electrode for sensing of carmoisine dye in food samples, Journal of Electrochemical Science and Engineering 12 (2022) 1143-1152. https://doi.org/10.5599/jese.1396
D. Doell, D. Folmer, H. Lee, K. Butts, S. Carberry, Exposure estimate for FD&C colour additives for the US population, Food Additives & Contaminants A 33 (2016) 782-797. https://doi.org/10.1080/19440049.2016.1179536
L. Arnold, N. Lofthouse, E. Hurt, Artificial Food Colors and Attention-Deficit/Hyperactivity Symptoms: Conclusions to Dye for, Neurotherapeutics 9 (2012) 599-609. https://doi.org/10.1007/s13311-012-0133-x
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Scientific Opinion on the re-evaluation of Allura Red AC (E 129) as a food additive on request from the European Commission, EFSA Journal 7(11) (2009) 1327. https://doi.org/10.2903/j.efsa.2009.1327
European Food Safety Authority, Refined exposure assessment for Allura Red AC (E 129), EFSA Journal 13(2) (2015) 4007. https://doi.org/10.2903/j.efsa.2015.4007
FDA/CFSAN Food Advisory Committee, Center for Food Safety and Applied Nutrition, March 30-31, (2011) Food Advisory Committee Meeting.
https://foodpoisoningbulletin.com/wp-content/uploads/FAC-Color-Additives-ADHD.pdf
Council of the European Union. L 354/16, (1333) (2008) 16-33.
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R1333
K. Chung, Mutagenicity and carcinogenicity of aromatic amines metabolically produced from Azo Dyes, Journal of Environmental Science and Health C 18 (2000) 51-74.
https://doi.org/10.1080/10590500009373515
P. Barciela, A. Perez-Vazquez, M. Prieto, Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation, Food and Chemical Toxicology 178 (2023) 113935. https://doi.org/10.1016/j.fct.2023.113935
K. Golka, S. Kopps, Z. W. Myslak, Carcinogenicity of azo colorants: influence of solubility and bioavailability, Toxicology Letters 151 (2004) 203-210. https://doi.org/10.1016/j.toxlet.2003.11.016
Y. Kwon, S. Banskota, H. Wang, L. Rossi, J. A. Grondin, S. A. Syed, Y. Yousefi, J. D. Schertzer, K. M. Morrison, M. G. Wade, A. C. Holloway, M. G. Surette, G. R. Steinberg, W. I. Khan, Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice, Nature Communications 13 (2022) 7617. https://doi.org/10.1038/s41467-022-35309-y
A. Kargupta, K. Dutta, D. Roychoudhury, S. Rana, S. Nath Talapatra, Toxicity, Genotoxicity and Ecotoxicity of Food Colourants Especially Synthetic Dyes and its Metabolites: An in silico Approach, Asian Journal of Chemistry 34 (2022) 2955-2960.
https://doi.org/10.14233/ajchem.2022.23987
N. Rasouli, N. Sohrabi, Z. Arabpour, Binding thermodynamic, spectroscopic and molecular docking study of Allura Red AC to Bovine Serum Albumin, Moroccan Journal of Chemistry 5 (2017) 336-345. https://doi.org/10.48317/IMIST.PRSM/morjchem-v5i2.7694
L. I. Khayyat, A. E. Essawy, J. M. Sorour, A. Soffar, Sunset Yellow and Allura Red modulate Bcl2 and COX2 expression levels and confer oxidative stress-mediated renal and hepatic toxicity in male rats, PeerJ 6 (2018) e5689. https://doi.org/10.7717/peerj.5689
A. Noorafshan, M. Hashemi, S. Karbalay-Doust, F. Karimi, High dose Allura Red, rather than the ADI dose, induces structural and behavioral changes in the medial prefrontal cortex of rats and taurine can protect it, Acta Histochemica 120 (2018) 586-594. https://doi.org/10.1016/j.acthis.2018.07.004
P. Sharma, M. Swarnkar, L. Shahani, Effect of food colorant allura red on hematological, biochemical & antioxidant parameters of Swiss albino male mice, Materials Today: Proceedings 69 (2023) A12-A17. https://doi.org/10.1016/j.matpr.2023.01.097
Q. Zhang, A. A. Chumanevich, I. Nguyen, A.A. Chumanevich, N. Sartawi, J. Hogan, M. Khazan, Q. Harris, B. Massey, I. Chatzistamou, P. J. Buckhaults, C. E. Banister, M. Wirth, J. R. Hebert, E. A. Murphy, L. J. Hofseth, The synthetic food dye, Red 40, causes DNA damage, causes colonic inflammation, and impacts the microbiome in mice, Toxicology Reports 11 (2023) 221-232. https://doi.org/10.1016/j.toxrep.2023.08.006
L. J. Hofseth, J. R. Hebert, E. A. Murphy, E. Trauner, A.Vikas, Q.Harris, A. A. Chumanevich, Allura Red AC is a xenobiotic. Is it also a carcinogen?, Carcinogenesis 45 (2024) 711-720. https://doi.org/10.1093/carcin/bgae057
F. Gosetti, U. Chiuminatto, E. Mazzucco, G. Calabrese, M. C. Gennaro, E. Marengo, Non-target screening of Allura Red AC photodegradation products in a beverage through ultra high performance liquid chromatography coupled with hybrid triple quadrupole/linear ion trap mass spectrometry, Food Chemistry 136 (2013) 617-623. https://doi.org/10.1016/j.foodchem.2012.08.019
K. Rovina, S. Siddiquee, S. Shaarani, Extraction, analytical and advanced methods for detection of allura red AC (E129) in food and beverages products, Frontiers in Microbiology 7 (2016) 798. https://doi.org/10.3389/fmicb.2016.00798
S. Siddiquee, A. M. ShafriShafwanah, Toxicology and analytical methods for the analysis of allura red (E129) in food and beverage products: a current perspective, in Safety issues in beverage production, A. M. Grumezescu, A. M. Holban (eds.), Elsevier, Amsterdam, 2020, pp. 335-357. https://doi.org/10.1016/B978-0-12-816679-6.00010-3
H. Wu, J.-B. Guo, L.-M. Du, H. Tian, C.-X. Hao C-X, Z.-F. Wang, J.-Y. Wang, A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks, sugar- and gelatin-based confectionery by high-performance liquid chromatography, Food Chemistry 141 (2013) 182-186. https://doi.org/10.1016/j.foodchem.2013.03.015
X. Qin, X. Zhu, Determination of Allura Red in Food by Ionic Liquid ß-Cyclodextrin-Cross-Linked Polymer Solid Phase Extraction and High-Performance Liquid Chromatography, Analytical Letters 49 (2016) 189-199. https://doi.org/10.1080/00032719.2015.1065880
D. Pagáčiková, J. Lehotay, Determination of Synthetic Colors in Meat Products Using High-Performance Liquid Chromatography with Photodiode Array Detector, Journal of Liquid Chromatography & Related Technologies 38 (2015) 579-583. https://doi.org/10.1080/10826076.2014.922473
A. Bişgin, Y. Sürme, M. Uçan, İ. Narin, Solid-phase extraction and spectrophotometric determination of Allura Red (E129) in foodstuff, soft drink, syrup and energy drink samples: a comparison study, International Journal of Food Science & Technology 51 (2016) 2367-2375. https://doi.org/10.1111/ijfs.13217
Y. M. G. Al Shamari, A. A. Alwarthan, S. M. Wabaidur, M. . Khan, A. A. Alqadami, M. R. Siddiqui, New Ultra Performance liquid chromatography-mass spectrometric method for the determination of allura red in soft drinks usingcorncob assolid phase extraction sorbent: Analysis and food waste management approach, Journal of King Saud University – Science 32 (2020) 1135-1141. https://doi.org/10.1016/j.jksus.2019.10.011
M. Prado, L. Boas, M. Bronze, H. Godoy, Validation of methodology for simultaneous determination of synthetic dyes in alcoholic beverages by capillary electrophoresis, Journal of Chromatography A 1136 (2006) 231-236. https://doi.org/10.1016/j.chroma.2006.09.071
H. Karimi-Maleh, H. Beitollahi, P. S. Kumar, S. Tajik, P. M. Jahani, F. Karimi, C. Karaman, Y. Vasseghian, M. Baghayeri, J. Rouhi, P. L. Show, S. Rajendran, L. Fu, N. Zare, Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection, Food and Chemical Toxicology 164 (2022) 112961. https://doi.org/10.1016/j.fct.2022.112961
A. A. Cardenas-Riojas, S. L. Calderon-Zavaleta, U. Quiroz-Aguinaga, G. Muedas-Taipe, S. M. Carhuayal-Alvarez, Y. F. Ascencio-Flores, M. Ponce-Vargas, A. M. Baena-Moncada, Modified Electrochemical Sensors for the Detection of Selected Food Azo Dyes, ChemElectroChem 11 (2024) e202300490. https://doi.org/10.1002/celc.202300490
T. Dodevska, D. Hadzhiev, I. Shterev, Recent advances in electrochemical determination of anticancer drug 5-fluorouracil, ADMET and DMPK 11 (2023) 135-150. https://doi.org/10.5599/admet.1711
C. Dincer, R. Bruch, E. Costa-Rama, M. Fernández-Abedul, A. Merkoçi, A. Manz, G. A. Urban, F. Güder, Disposable Sensors in Diagnostics, Food, and Environmental Monitoring, Advanced Materials 31 (2019) 1806739. https://doi.org/10.1002/adma.201806739
O. Lipskikh, E. Korotkova, Y. Khristunova, J. Barek, B. Kratochvil, Sensors for voltammetric determination of food azo dyes – A critical review, Electrochimica Acta 260 (2018) 974-985. https://doi.org/10.1016/j.electacta.2017.12.027
S. Chanlon, L. Joly-Pottuz, M. Chatelut, O. Vittori, J. Cretier, Determination of Carmoisine, Allura red and Ponceau 4R in sweets and soft drinks by Differential Pulse Polarography, Journal of Food Composition and Analysis 18 (2005) 503-515. https://doi.org/10.1016/j.jfca.2004.05.005
A. H. Alghamdi, Determination of allura red in some food samples by adsorptive stripping voltammetry, Journal of AOAC International 88 (2005) 1387-1393.
https://doi.org/10.1093/jaoac/88.5.1387
S. Tvorynska, B. Josypčuk, J. Barek, L. Dubenska, Electrochemical Behavior and Sensitive Methods of the Voltammetric Determination of Food Azo Dyes Amaranth and Allura Red AC on Amalgam Electrodes, Food Analytical Methods 12 (2019) 409-421. https://doi.org/10.1007/s12161-018-1372-1
E. Diacu, E.-M. Ungureanu, A. Ivanov, M. Jurcovan, Voltammetric Techniques for Determination of Allura Red AC Synthetic Pigment in Beverages, Revista de Chimie (Rev. Chim.) 66 (2015) 769-773. https://bch.ro/pdfRC/DIACU%20E.pdf%206%2015.pdf
B. Claux, O. Vittori, Bismuth Film Electrode as an Alternative for Mercury Electrodes: Determination of Azo Dyes and Application for Detection in Food Stuffs, Electroanalysis 19 (2007) 2243-2246. https://doi.org/10.1002/elan.200703978
J. Rodríguez, M. Juárez, C. Galán-Vidal, J. Miranda, E. Barrado, Determination of Allura Red and Tartrazine in Food Samples by Sequential Injection Analysis Combined with Voltammetric Detection at Antimony Film Electrode, Electroanalysis 27 (2015) 2329-2334. https://doi.org/10.1002/elan.201500295
J. Penagos-Llanos, O. García-Beltrán, J. Calderón, E. Nagles, J. Hurtado, Carbon Paste Composite with Co3O4 as a New Electrochemical Sensor for the Detection of Allura Red by Reduction, Electroanalysis 31 (2019) 695. https://doi.org/10.1002/elan.201800710
Y. Zeng, Y. Tang, T. Gan, C. Wu, Flexible self-supporting laser-induced graphene electrode devices for highly sensitive electrochemical analysis of Allura Red, Carbon Letters 34 (2024) 985-995. https://doi.org/10.1007/s42823-023-00636-7
T. H. G. Le, T. M. Nguyen, T. T. N. Pham, T. B. Do, M. H. G. Dang, T. T. K. Nguyen, Electrochemical study of allura red at glassy carbon electrode modified with the reduced graphene oxide and its determination in food by adsorptive stripping voltammetry, Analytical and Bioanalytical Electrochemistry 15 (2023) 371-381. https://doi.org/10.22034/abec.2023.705135
P. Sierra-Rosales, C. Toledo-Neira, P. Ortúzar-Salazar, J. Squella, MWCNT-modified Electrode for Voltammetric Determination of Allura Red and Brilliant Blue FCF in Isotonic Sport Drinks, Electroanalysis 31 (2019) 883. https://doi.org/10.1002/elan.201800786
L. Yu, M. Shi, X. Yue, L. Qu, Detection of allura red based on the composite of poly (diallyldimethylammonium chloride) functionalized graphene and nickel nanoparticles modified electrode, Sensors and Actuators B: Chemical 225 (2016) 398-404. https://doi.org/10.1016/j.snb.2015.11.061
K. Rovina, S. Siddquee, S. Shaarani, Rapid detection of allura red (E129) based on chitosan/nanoparticles/MWCNTs modified gold electrode in food products, Transactions on Science and Technology 2 (2015) 56-64. https://tost.unise.org/pdfs/vol2n1/2156_64.pdf
K. Zhang, H. Zeng, J. Feng, Z. Liu, Z. Chu, W. Jin, Screen-printing of core-shell Mn3O4@C nanocubes based sensing microchip performing ultrasensitive recognition of allura red, Food and Chemical Toxicology 162 (2022) 112908. https://doi.org/10.1016/j.fct.2022.112908
A. Vargas‐Varela, A. Cardenas‐Riojas, E. Nagles, J. Hurtado, Detection of Allura Red in Food Samples Using Carbon Paste Modified with Lanthanum and Titanium Oxides, ChemistrySelect 8 (2023) 5. https://doi.org/10.1002/slct.202204737
S. Gunduz, A. Alayli, H. Guney, O. Coban, M. Ertugrul, H. Nadaroglu, A Study of Nanostructured FeO Thin Film-Based Allure Red and Direct Blue 15 Azo Dyes Sensing Scheme, Journal of Nano Research 82 (2024) 21-32. https://doi.org/10.4028/p-dz4n68
S. B. Ravikumar, S. B. Prasanna, S. A. Shivamurthy, S. Shadakshari, B. M. Nagaraja, J. R. Rajabathar, H. A. Al-lohedan, S. Arokiyaraj, Individual and Simultaneous Electrochemical Detection of Allura Red and Acid Blue 9 in Food Samples Using a Novel La2YCrO6 Double Perovskite Decorated on HLNTs as an Electrocatalyst, ACS Omega 9 (2024) 2568-2577. https://doi.org/10.1021/acsomega.3c07330
M. Moarefdoust, S. Jahani, M. Moradalizadeh, M. Motaghi, M Foroughi, Effect of positive In(III) doped in nickel oxide nanostructure at modified glassy carbon electrode for determination of allura red in soft drink powders, Monatshefte für Chemie-Chemical Monthly 152 (2021) 1515-1525. https://doi.org/10.1007/s00706-021-02863-y
M. Mehmandoust, P. Pourhakkak, F. Hasannia, Ö. Özalp, M. Soylak, N. Erk, A reusable and sensitive electrochemical sensor for determination of Allura red in the presence of Tartrazine based on functionalized nanodiamond@SiO2@TiO2; an electrochemical and molecular docking investigation, Food and Chemical Toxicology 164 (2022) 113080. https://doi.org/10.1016/j.fct.2022.113080
G. Li, J. Wu, H. Jin, Y. Xia, J. Liu, Q. He, D. Chen, Titania/Electro-Reduced Graphene Oxide Nanohybrid as an Efficient Electrochemical Sensor for the Determination of Allura Red, Nanomaterials 10 (2020) 307. https://doi.org/10.3390/nano10020307
H. Ehzari, E. Darvishi, A Novel Green Electrochemical Sensor Modified with ZnO Nanoparticles for Detection of Allura Red, Journal of The Electrochemical Society 170 (2023) 097509. https://doi.org/10.1149/1945-7111/acfa83
E. Nagles, M. Ceroni, C. Huerta, J. Hurtado, Simultaneous Electrochemical Determination of Paracetamol and Allura Red in Pharmaceutical Doses and Food Using a Mo(VI) Oxide-Carbon Paste Microcomposite, Electroanalysis 33 (2021) 2335-2344. https://doi.org/10.1002/elan.202100261
R. Georgescu-State, J. van Staden, R.-I. Stefan-van Staden, R. State, F. Papa, Fast on-Site and Highly Sensitive Determination of Allura Red Using a Portable Electrochemical Platform Based on Poly(pyrrole) and Bimetallic Nanocomposites Anchored on Reduced Graphene Oxide, Journal of The Electrochemical Society 171 (2024) 067511. https://doi.org/10.1149/1945-7111/ad541b
M. Shahsavari, I. Sheikhshoaie, A sensitive and simple method for voltammetric analysis of Sudan I as an azo dye in food samples using a Fe3O4-ZIF-67/ionic liquid modified carbon paste electrode, Journal of Electrochemical Science and Engineering 12 (2022) 165-173. https://doi.org/10.5599/jese.1217
T. Almeida-Silva, A. Wong, O. Fatibello-Filho, Electrochemical sensor based on ionic liquid and carbon black for voltammetric determination of Allura red colorant at nanomolar levels in soft drink powders, Talanta 209 (2020) 120588. https://doi.org/10.1016/j.talanta.2019.120588
M. Bukharinova, E. Khamzina, N. Stozhko, A. Tarasov, Highly sensitive voltammetric determination of Allura Red (E129) food colourant on a planar carbon fiber sensor modified with shungite, Analytica Chimica Acta 1272 (2023) 341481. https://doi.org/10.1016/j.aca.2023.341481
D. Wei, A. Ivaska, Applications of ionic liquids in electrochemical sensors, Analytica Chimica Acta 607 (2008) 126-135. https://doi.org/10.1016/j.aca.2007.12.011
S. Uruc, O. Gorduk, Y. Sahin, Electroanalytical determination of Allura Red in beverage samples using an anodically pretreated graphite electrode, International Journal of Environmental Analytical Chemistry 103 (2021) 3544-3562. https://doi.org/10.1080/03067319.2021.1910252
K. Pliuta, A. Chebotarev, A. Pliuta, D. Snigur, Voltammetric Determination of Allura Red AC onto Carbone‐paste Electrode Modified by Silica with Embedded Cetylpyridinium Chloride, Electroanalysis 33 (2021) 987-992. https://doi.org/10.1002/elan.202060367
E. Nagles, O. García-Beltrán, Determination of Allura Red in the Presence of Cetylpyridinium Bromide by Square-wave Adsorptive Stripping Voltammetry on a Glassy Carbon Electrode, Analytical Sciences 34 (2018) 1171-1175. https://doi.org/10.2116/analsci.17P555
M. Cui, M. Wang, B. Xu, X. Shi, D. Han, J. Guo, Determination of allura red using composites of water-dispersible reduced graphene oxide-loaded Au nanoparticles based on ionic liquid, International Journal of Environmental Analytical Chemistry 96 (2016) 1117-1127. https://doi.org/10.1080/03067319.2016.1243240
Y. Zhang, X. Zhang, X. Lu, J. Yang, K. Wu, Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red, Food Chemistry 122 (2010) 909-913. https://doi.org/10.1016/j.foodchem.2010.03.035
S. Combeau, M. Chatelut, O. Vittori, Identification and simultaneous determination of Azorubin, Allura red and Ponceau 4R by differential pulse polarography: application to soft drinks, Talanta 56 (2002) 115-122. https://doi.org/10.1016/S0039-9140(01)00540-9
J. Zhang, S. Zhang, X. Wang, W. Wang, Z. Chen, Simultaneous determination of Ponceau-4R and Allura Red in soft drinks based on the ionic liquid modified expanded graphite paste electrode, International Journal of Environmental Analytical Chemistry 95 (2015) 581-591. https://doi.org/10.1080/03067319.2015.1046055
Q. Cheng, S. Xia, J. Tong, K. Wu, Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon, Analytica Chimica Acta 887 (2015) 75-81. https://doi.org/10.1016/j.aca.2015.06.013
M. Buharinova, E. Khamzina, V. Kolotygina, N. Stozhko, A Voltammetric Sensor Based on Carbon Veil Modified with Graphene and Phytosynthesized Cobalt Oxide Nanoparticles for the Determination of Food Dyes Tartrazine (E102) and Allura Red (E129), Journal of Analytical Chemistry 78 (2023) 1679-1687. https://doi.org/10.1134/S106193482312002X
P. Deroco, R. Medeiros, R. Rocha-Filho, O. Fatibello-Filho, Selective and simultaneous determination of indigo carmine and allura red in candy samples at the nano-concentration range by flow injection analysis with multiple pulse amperometric detection, Food Chemistry 247 (2018) 66. https://doi.org/10.1016/j.foodchem.2017.12.006
R. Darabi, M. Shabani-Nooshabadi, NiFe2O4-rGO/ionic liquid modified carbon paste electrode: An amplified electrochemical sensitive sensor for determination of Sunset Yellow in the presence of Tartrazine and Allura Red, Food Chemistry 339 (2021) 127841. https://doi.org/10.1016/j.foodchem.2020.127841
M. Wang, J. Zhao, A Facile Method Used for Simultaneous Determination of Ponceau 4R, Allura Red and Tartrazine in Alcoholic Beverages, Journal of The Electrochemical Society 162 (2015) H321. https://doi.org/10.1149/2.0111506jes
S. Rivera-Hernández, S. Corona-Avendaño, G. Vázquez-Huerta, M. Palomar-Pardavé, M. Romero-Romo, M.T. Ramírez-Silva, Simultaneous Electrochemical Quantification of Foodstuff Dyes Allura Red and Tartrazine Using a Bare Carbon Paste Electrode, Journal of The Electrochemical Society 168 (2021) 057514. https://doi.org/10.1149/1945-7111/abff64
F. Mariani, I. Gualandi, W. Schuhmann, E. Scavetta, Micro- and nano-devices for electrochemical sensing, Microchimica Acta 189 (2022) 459. https://doi.org/10.1007/s00604-022-05548-3
K. Sakthivel, S. Balasubramanian, G.-P. Chang-Chien, S.-F. Wang, Ahammad, W. Billey, J. Platero, T. Soundappan, P. Sekhar, Editors’ Choice—Review—Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability, ECS Sensors Plus 3 (2024) 020605. https://doi.org/10.1149/2754-2726/ad5455
T. Dodevska, I. Shterev, Electrochemical overview: nanomaterials as catalysts for the sensitive and selective determination of diclofenac, ADMET and DMPK 12 (2024) 151-165. https://doi.org/10.5599/admet.2116
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.