Electrochemical sensing of caffeic acid antioxidant in wine samples using carbon paste electrode amplified with CdO/SWCNTs

Original scientific paper

Authors

  • Zahra Arab Department of Food Science and Technology, Nour Branch, Islamic Azad University, Nour, Iran https://orcid.org/0009-0009-7650-5084
  • Sara Jafarian Department of Food Science and Technology, Nour Branch, Islamic Azad University, Nour, Iran
  • Hassan Karimi-Maleh Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran https://orcid.org/0000-0002-1027-481X
  • Leila Roozbeh Nasiraie Department of Food Science and Technology, Nour Branch, Islamic Azad University, Nour, Iran https://orcid.org/0000-0002-6260-0103
  • Mohammad Ahmadi Department of Food Hygiene, Ayatollah Amoli Branch, Islamic Azad University, Amol 4615143358, Iran https://orcid.org/0000-0002-4909-4365

DOI:

https://doi.org/10.5599/jese.1701

Keywords:

Food sensor, nanocomposite, electroanalysis, modified electrodes, real sample analysis
Graphical Abstract

Abstract

An electrochemical sensor was introduced as an analytical tool for monitoring caffeic acid in food samples. This analytical tool was amplified by cadmium oxide decorated on single wall carbon nanotubes as a new catalyst and showed a powerful ability to sensing of caffeic acid in food products. The presence of cadmium oxide decorated on single wall carbon nanotubes catalyst improved the oxidation signal of caffeic acid about 2.4 times at optimum conditions. The pH investigation confirmed that the redox reaction of caffeic acid was pH dependent and showed maximum sensitivity at pH 7.0. The paste electrode amplified with cadmium oxide decorated on single wall carbon nanotubes successfully monitored caffeic acid in the concentration range 0.02–200 µM with a detection limit of 9.0 nM, respectively. The standard addition strategy showed a recovery range of 97.96 to 102.59 % to the measurement of caffeic acid in fruit juice, white and red wine that was acceptable for the fabrication of a new analytical tool in food monitoring.

Downloads

Download data is not yet available.

References

K. Waki, Sulfur/Carbon Composite Electrodes for Lithium-Sulfur Batteries, Strategy for Technology Development, Proposal paper for Policy Making and Governmental Action toward Low Carbon Societies, Center for Low Carbon Society Strategy, Japan Science and Technology Agency, February (2018). https://www.jst.go.jp/lcs/en

M. H. Braga, N. S. Grundish, A. J. Murchison, J. B. Goodenough, Alternative strategy for a safe rechargeable battery, Comment on “Alternative strategy for a safe rechargeable battery” Energy and Environmental Science 10 (2017) 331-336. https://dx.doi.org/10.1039/c6ee02888h

D. A. Streingart, V. Viswanathan, Comment on “Alternative strategy for a safe rechargeable battery” by M. H. Braga, N. S. Grundish, A. J. Murchison and J. B. Goodenough, Energy Environ. Sci., 2017, 10, 331–336, Energy and Environmental Science 11 (2018) 221-222. https://dx.doi.org/10.1039/c7ee01318c

M. H. Braga, A. J. Murchison, J. A. Ferreira, P. Singh, J. B. Goodenough, Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells, Energy and Environ-mental Science 9 (2016) 948-954. https://doi.org/10.1039/C5EE02924D

M. H. Braga, C. M. Subramaniyam, A. J. Murchison, J. B. Goodenough, Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life, Journal of the American Chemical Society 140 (2018) 6343-6352. https://dx.doi.org/10.1021/jacs.8b02322

M. H. Braga, J. E. Oliveira, A. J. Murchison, J. B. Goodenough, Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistance, Applied Physics Reviews 7 (2020) 011406. https://dx.doi.org/10.1063/1.5132841

M. Sakai, A Reaction Model for Li Deposition at the Positive Electrode of the Braga-Goodenough Li-S Battery, Journal of the Electrochemical Society 167 (2020) 160540. https://dx.doi.org/10.1149/1945-7111/abcf53

T. Uehara, N. Igarashi, R. V. Belosludov, A. A. Farajian, H. Mizuseki, Y. Kawazoe, Theoretical Study of Conductance Properties of Metallocene, Journal of the Japan Institute of Metals and Materials 70(6) (2006) 478-482. https://dx.doi.org/10.2320/jinstmet.70.478 (in Japanese)

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 35-37. ISBN 0-444-82806-0

R. W. Gurney, Theory of Electrical Double Layers in Adsorbed Films, Physical Review Journals Archive 47 (1935) 479. https://dx.doi.org/10.1103/PhysRev.47.479

R. Gomer, L. W. Swanson, Theory of Field Desorption, The Journal of Chemical Physics 38 (1963) 1613. https://dx.doi.org/10.1063/1.1776932

J. Bernard, Adsorption on Metal Surface, Studies in Surface Science and Catalysis, Elsevier Sci. B.V., Amsterdam, The Netherlands, 1993, p. 150. ISBN-10: 0444421637

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 121-126. ISBN 0-444-82806-0

A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, Inc., 2001 p.556. ISBN 0-471-04372-9

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 39-41. ISBN 0-444-82806-0

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p.44-45. ISBN 0-444-82806-0

T. Nakayama, K. Shiraishi, S. Miyazaki, Y. Akasaka, T. Nakaoka, K. Torii, A. Ohta, P. Ahmet, K. Ohmori, N. Umezawa, H. Watanabe, T. Chikyow, Y. Nara, H. Iwai, K. Yamada, ECS Transactions 3(3) (2006) 129. https://doi.org/10.1149/1.2355705

K. Shiraishi, Y. Akasaka, S. Miyazaki, T. Nakayama, T. Nakaoka, G. Nakamura, K. Torii, H. Furutou, A. Ohta, P. Ahmet, K. Ohmori, H. Watanabe, T. Chikyow, M. L. Green, Y. Nara, K. Yamada, Technical Digest of IEEE International Electron Devices Meeting, Washington D.C., USA, 2005, p.43-46. ISBN 9780780392687

T. Nakayama, K. Shiraishi, Physics of Metal/High-k Interfaces, Hyomen Kagaku 28(1) (2007) 28-33. https://dx.doi.org/10.1380/jsssj.28.28 (in Japanese)

K. Shiraishi, T. Nakayama, Universal Theory of Metal/Dielectric Interfaces, Hyomen Kagaku 29(2) (2008) 92-98. https://dx.doi.org/10.1380/jsssj.29.92 (in Japanese)

T. Nakayama, Y. Kangawa, K. Shiraishi, Atomic Structures and Electronic Properties of Semiconductor Interfaces in Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, H. Kamimura, Eds, Elsevier Sci. B. V., Amsterdam, The Netherlands, 2011, p. 157-161. ISBN 978-0-444-53153-7

T. Nakayama, Physica B 191(1-2) (1993) 16-22. https://dx.doi.org/ 10.1016/0921-4526(93)90175-6

M. Cardona, N. E. Christensen, Band offsets: the charge transfer effect, Physical Review B 35 (1987) 6182. https://dx.doi.org/10.1103/PhysRevB.35.6182

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, (2003) p. 254. ISBN 0-444-82806-0

I. Nakajima, Structure and properties of manganese oxide, Denki Kagaku 21 (1953) 367-375. https://doi.org/10.5796/denka.21.367 (in Japanese)

J. B. Goodenough, M. H. Braga, J. A. Ferreira, J. E. Oliveira, A. J. Murchison, Self-Charging and/or Self-Cycling Electrochemical Cells, United States, Patent Application Publication, US 2018/0287222 A1, Oct.4 (2018)

J. B. Li, K. Koumoto, H. Yanagida, Electrical Properties of β- and γ-Type Manganese (IV) Oxides, Journal of the Ceramic Society of Japan 96(1109) (1988) 74-79. https://doi.org/10.2109/jcersj.96.74 (in Japanese)

University of Texas Researchers Develop More Powerful and Long-lasting Battery, J. B. Goodenough interview by J. Schroeder, https://www.tun.com/blog/university-of-texas-powerful-and-longlasting-battery/

W. J. Bardeen, Surface States and Rectification at a Metal Semi-Conductor Contact, Physical Review B 71(10) (1947) 717. https://dx.doi.org/10.1103/PhysRev.71.717

A. M. Cowley, S. M. Sze, Surface States and Barrier Height of Metal‐Semiconductor Systems, Journal of Applied Physics 36(10) (1965) 3212-3220. https://dx.doi.org/10.1063/1.1702952

S. Hara, The Schottky Limit and a Charge Neutrality Level Found on Metal/6H-SiC Interfaces, Hyomen Kagaku 21(12) (2000) 791-799. https://dx.doi.org/10.1380/jsssj.21.791 (in Japanese)

S. Hara, The Schottky limit and a charge neutrality level found on metal/6H-SiC interfaces, Surface Science 494 (2001) L805-L810. https://doi.org/10.1016/S0039-6028(01)01596-5

Downloads

Published

19-06-2023 — Updated on 19-06-2023

How to Cite

Arab, Z., Jafarian, S., Karimi-Maleh, H., Roozbeh Nasiraie, L., & Ahmadi, M. (2023). Electrochemical sensing of caffeic acid antioxidant in wine samples using carbon paste electrode amplified with CdO/SWCNTs: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(1), 75–82. https://doi.org/10.5599/jese.1701

Issue

Section

Electroanalytical chemistry