Construction of new sensors with copper and cobalt complexes anchored on organofunctionalized silica and their use for electrocatalytic oxidation of reagents of biological interest

Original scientific paper

  • Marco Antonio Gonçalves Benetti Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
  • Denise Isadora Saores Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
  • Giovanna Gatti Alves Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
  • Eduardo Dias Andrade Pinto Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
  • Angelica Machi Lazarin Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil https://orcid.org/0000-0002-8867-9788
Keywords: Chemically modified carbon electrode, functionalized silica, metal complexes, dopamine, tamin B6, cyclic voltammetry
Graphical Abstract

Abstract

This work describes the development and application of chemically modified carbon paste electrode (CMCPE) with metal ion complexes of transition metals Co(II) and Cu(II) anchored on functionalized silica (SF). The prepared CMCPE was used for the determination of dopamine (DA) in the presence of pyridoxine (VB6) in commercially available pharmaceutical formulation, without any treatment of samples. The CMCPEs were built by incorporating graphite and functionalized silica and complexes of metal ions (Cu and Co) anchored by nitrogen groups on the silica surface. The electrochemical analysis was performed by cyclic voltammetry, while a drug analyzed in the present study was Revivan ampoules (DA determination).

Downloads

Download data is not yet available.

References

X. Li, B. Wang, Y. Cao, S. Zhao, H. Wang, X. Feng, J. Zhou, X. Ma, Chemical Engineering 7(5) (2019) 4548-4563. https://doi.org/10.1021/acssuschemeng.8b05751

S. K. Parida, S. Dash, S. Patel, B. K. Mishra, Advances in Colloid and Interface Science 121(1-3) (2006) 77-110. https://doi.org/10.1016/j.cis.2006.05.028

K. Kalcher, Electroanalysis 2(6) (1990) 419-433. https://doi.org/10.1002/elan.1140020603

A. M. Faria, C. H. Collins, I. C. S. F. Jardim, Journal of the Brazilian Chemical Society 20(8) (2009) 1385-1398. https://doi.org/10.1590/S0103-50532009000800002

H. Maleki, A. T. Portugal, L. Durães, Journal of Non-Crystalline Solids 385 (2014) 55-74. http://dx.doi.org/10.1016/j.jnoncrysol.2013.10.017

R. F. Silva, W. L. Vasconcelos, Materials Research 2(3) (1999) 197-200. https://doi.org/10.1590/S1516-14391999000300014

A. Mehdinia, S. Shegeftib F. Shemirani, Journal of the Brazilian Chemical Society 26(11) (2015) 249-2257. https://doi.org/10.5935/0103-5053.20150211

M. G. Vieira, G. Souza, G. H. B. Aristides, L. V. Lopes, A. M. Lazarin, International Journal of Sensors and Sensor Networks 5(2) (2017) 27-33. https://doi.org/10.11648/j.ijssn.20170502¬.12

[9] M. Parra, S. Stahl, H. Hellmann, Cells 7(7) (2018) 84. https://doi.org/10.3390/cells707-0084

A. Mobed, M. Hasanzadeh, A. Ahmadalipour, A. Fakhari, Analytical Methods 12(4) (2020) 557-575. https://doi.org/10.1039/C9AY02390A

C. A. Martínez-Huitle, M. Cerro-Lopez, M. A. Quiroz, Materials Research 12(4) (2009) 375-384. https://doi.org/10.1590/S1516-14392009000400002

A. P. Filippov, Theoretical and Experimental Chemistry 19 (1984) 427-433. https://doi.org/10.1007/bf00518093

A. M. Lazarin, B. B. Cazula, Materials Chemistry and Physics 186(15) (2017) 470-477. https://doi.org/10.1016/j.matchemphys.2016.11.021

R. Golbedaghi, F. Khajavi, Bulletin of the Chemical Society of Ethiopia 28(1) (2014) 1-8. https://doi.org/10.4314/bcse.v28i1.1

A. Madejová, P. Komadel, Clays and Clay Minerals 49 (2001) 410-432. https://doi.org/-10.1346¬/CCMN.2001.0490508

A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley & Sons, New York, 1980, 218.

L. B. Panice, E. A. Oliveira, R. A. D. Molin Filho, D. P. Oliveira, A. M. Lazarin, E. I. S. Andreotti, R. L. Sernaglia, Y. Gushikem, Materials Science and Engineering B 188 (2014) 78-83. https://doi.org/10.1016/j.mseb.2014.06.010

A. R. Harris, J. Zhang, R. W. Cattrall, A. M. Bond, Analytical Methods 5 (2013) 3840-3852. https://doi.org/10.1039/C3AY40769A

M. Cuartero, R. G. Acres, R. De Marco, E. Bakker, G. A. Crespo, Analytical Chemistry 88(13) (2016) 6939-6946. https://doi.org/10.1021/acs.analchem.6b01800

A. A. Hoffmann, S. L. P. Dias, E.V. Benvenutti, E. C. Lima, F. A. Pavan, J. R. Rodrigues, R. Scotti, E. S. Ribeiro, Y. Gushikem, Journal of the Brazilian Chemical Society 18(8) (2007) 1462-1472. https://doi.org/10.1590/S0103-50532007000800003

J.-M. Zen, J.-C. Chen, A. S. Kumar, Tamkang Journal of Science and Engineering 5(4) (2002) 219-222. http://dx.doi.org/10.6180/jase.2002.5.4.03

H. Yin, Y. Zhou, Q. Zhang, Q. Ma, Electrochimica Acta 56(6) (2011) 2748-2753. http://dx.doi.org/10.1016/j.electacta.2010.12.060

Published
24-02-2022
Section
Electrochemical Science