Electrochemical sensors for the safety and quality control of cosmetics: An overview of achievements and challenges

Review paper


  • Totka Dodevska Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv, Bulgaria https://orcid.org/0000-0002-5231-7347
  • Dobrin Hadzhiev Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv, Bulgaria https://orcid.org/0000-0002-8056-1742
  • Ivan Shterev Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv, Bulgaria https://orcid.org/0000-0002-0722-4600




Personal care products, ingredients, analytical methods, electroanalysis
Graphical Abstract


Due to the rapid growth of the cosmetic industry in recent years, the development of new, reliable, cost-effective, ease of use and rapid methods to assay cosmetics’ quality is of particular importance. Modern electrochemistry provides powerful analytical techniques with excellent sensitivity, instrumental simplicity and portability, providing reliable alter­natives to conventional analytical methods. This review aims to give readers a clear view of advances in areas of electrode modification, successful strategies for signal amplification, and miniaturization techniques used in electro­analytical devices for cosmetics control and safety. We have summarized recent trends in the nonenzymatic electrochemical sensor sys­tems applied in the analysis of cosmetic products revealing that there are a variety of ef­ficient sensors for whitening agents, preservatives, UV filters, heavy metals, etc. In con­clu­sion, current challenges related to the sensors design and future perspectives are outlined.


Download data is not yet available.


S. Borowska, M.M. Brzóska, Metals in cosmetics: implications for human health, Journal of Applied Toxicology 35 (2015) 551-572. https://doi.org/10.1002/jat.3129

A. Salvador, A. Chisvert, Analysis of Cosmetic Products, Elsevier, Amsterdam, The Netherlands, 2017. https://doi.org/10.1016/B978-0-444-63508-2.00016-3

H. Karimi-Maleh, R. Darabi, M. Shabani-Nooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, M. Alizadeh, O. Karaman, Y. Vasseghian, C. Karaman, Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples, Food and Chemical Toxicology 162 (2022) 112907. https://doi.org/10.1016/j.fct.2022.112907

M. Lores, M. Llompart, G. Alvarez-Rivera, E. Guerra, M. Vila, M. Celeiro, J.P. Lamas, C. Garcia-Jares, Positive lists of cosmetic ingredients: Analytical methodology for regulatory and safety controls—A review, Analytica Chimica Acta 915 (2016) 1-26. https://doi.org/10.1016/j.aca.2016.02.033

H. Karimi-Maleh, H. Beitollahi, P. Senthil Kumar, S. Tajik, P. M. Jahani, F. Karimi, C. Karaman, Y. Vasseghian, M. Baghayeri, J. Rouhi, P. L. Show, S. Rajendran, L. Fu, N. Zare, Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection, Food and Chemical Toxicology 164 (2022) 112961. https://doi.org/10.1016/j.fct.2022.112961

Y. Feng, Y. Li, Y. Tong, C. Cui, X. Li, B.-C. Ye, Simultaneous determination of dihydroxybenzene isomers in cosmetics by synthesis of nitrogen-doped nickel carbide spheres and construction of ultrasensitive electrochemical sensor, Analytica Chimica Acta 1176 (2021) 338768. https://doi.org/10.1016/j.aca.2021.338768

B. S. Lynch, E. S. Delzell, D. H. Bechtel, Toxicology review and risk assessment of resorcinol: Thyroid effects, Regulatory Toxicology and Pharmacology 36 (2002) 198-210. https://doi.org/10.1006/rtph.2002.1585

Regulation (EC) No 1223/2009 of the European Parliament and of the Council, of 30 November 2009, on Cosmetic Products. Off. J. Eur. Union 2009. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (Accessed on August 30, 2022).

S. Cotchim, K. Promsuwan, M. Dueramae, S. Duerama, A. Dueraning, P. Thavarungkul, P. Kanatharana, W. Limbut, Development and Application of an Electrochemical Sensor for Hydroquinone in Pharmaceutical Products, Journal of The Electrochemical Society, 167 (2020) 155528. https://doi.org/10.1149/1945-7111/abd0cd

Y. Olumide, A. Akinkugbe, D. Altraide, T. Tahir, N. Ahamefule, S. Ayanlowo, C. Onyekonwu, N. Essen, Complications of chronic use of skin lightening cosmetics, International Journal of Dermatology 47 (2008) 344-53. https://doi.org/10.1111/j.1365-4632.2008.02719.x

S. Aydar, D. E. Bayraktepe, H. Filik, Z. Yazan, A Nano-Sepiolite Clay Electrochemical Sensor for the Rapid Electro–Catalytic Detection of Hydroquinone in Cosmetic Products, Acta Chimica Slovenica 65 (2018) 946-954. http://dx.doi.org/10.17344/acsi.2018.4615

A. Ferrari, S. Rowley-Neale, C. Banks, Screen-printed electrodes: Transitioning the laboratory in-to-the field, Talanta Open 3 (2021) 100032. https://doi.org/10.1016/j.talo.2021.100032

S. Cinti, F. Arduini, Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms, Biosensors and Bioelectronics 89 (2017) 107-122. https://doi.org/10.1016/j.bios.2016.07.005

W. Duekhuntod, C. Karuwan, A. Tuantranont, D. Nacapricha, S. Teerasong, A Screen Printed Graphene Based Electrochemical Sensor for Single Drop Analysis of Hydroquinone in Cosmetic Products, International Journal of Electrochemical Science 14 (2019) 7631-7642. https://doi.org/10.20964/2019.08.94

H.-H. Yang, H.-H.Ting, Y. Shih, Self-validated detection of hydroquinone in medicated cosmetic products using a preanodized screen-printed ring disk carbon electrode, Analytical Methods, 8 (2016) 5495-5502. https://doi.org/10.1039/C6AY01000H

M. Harsini, U. Untari, E. Fitriany, A. N. Farida, M. Z. Fahmi, S.C.W. Sakti, G. Pari, Voltammetric analysis of hydroquinone in skin whitening cosmetic using ferrocene modified carbon paste electrode, Rasayan Journal of Chemistry 12 (2019) 2296-2305. http://dx.doi.org/10.31788/RJC.2019.1245479

G. Manasa, A. K. Bhakta, Z. Mekhalif, R. J. Mascarenhas, Voltammetric Study and Rapid Quantification of Resorcinol in Hair Dye and Biological Samples Using Ultrasensitive Maghemite/MWCNT Modified Carbon Paste Electrode, Electroanalysis 31 (2019) 1363. https://doi.org/10.1002/elan.201900143

N. M. M. A. Edris, Y. Sulaiman, Ultrasensitive voltammetric detection of benzenediol isomers using reduced graphene oxide-azo dye decorated with gold nanoparticles, Ecotoxicology and Environmental Safety 203 (2020) 111026. https://doi.org/10.1016/j.ecoenv.2020.111026

N. Butwong, S. Srijaranai, J. D. Glennon, J. H. T. Luong, Cysteamine Capped Silver Nanoparticles and Single-walled Carbon Nanotubes Composite Coated on Glassy Carbon Electrode for Simultaneous Analysis of Hydroquinone and Catechol, Electroanalysis 30 (2018) 962-968. https://doi.org/10.1002/elan.201700704

T. Dodevska, D. Hadzhiev, I. Shterev, Y. Lazarova, Application of biosynthesized metal nanoparticles in electrochemical sensors: Review, Journal of the Serbian Chemical Society 87 (2022) 401-435. https://doi.org/10.2298/JSC200521077D

J. A. Buledi, S. Ameen, N. H. Khand, A. R. Solangi, I. H. Taqvi, M. H. Agheem, Z. Wajdan, CuO Nanostructures Based Electrochemical Sensor for Simultaneous Determination of Hydroquinone and Ascorbic Acid, Electroanalysis 32 (2020) 1600. https://doi.org/10.1002/elan.202000083

A. Domínguez-Aragón, R. B. Dominguez, E. A. Zaragoza-Contreras, Simultaneous Detection of Dihydroxybenzene Isomers Using Electrochemically Reduced Graphene Oxide-Carboxylated Carbon Nanotubes/Gold Nanoparticles Nanocomposite, Biosensors 11 (2021) 321. https://doi.org/10.3390/bios11090321

K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Gold Nanoparticles in Chemical and Biological Sensing, Chemical Reviews 112 (2012) 2739-2779. https://doi.org/10.1021/cr2001178

S. A. Shahamirifard, M. Ghaedi, A new electrochemical sensor for simultaneous determination of arbutin and vitamin C based on hydroxyapatite-ZnO-Pd nanoparticles modified carbon paste electrode, Biosensors and Bioelectronics 141 (2019) 111474. https://doi.org/10.1016/j.bios.2019.111474

S.A. Barutçu, D.E. Bayraktepe, Z. Yazan, K. Polat, F. Hayati, Investigation of electrochemical oxidation mechanism, rapid and low-level determination for whitening cosmetic: arbutin in aqueous solution by nano sepiolite clay, Chemical Papers 75 (2021) 3483-3491. https://doi.org/10.1007/s11696-021-01581-3

J.-M. Zen, H.-H. Yang, M.-H. Chiu, C.-H. Yang, Y. Shih, Selective Determination of Arbutin in Cosmetic Products Through Online Derivatization Followed by Disposable Electrochemical Sensor, Journal of AOAC International 94 (2011) 985-990. https://doi.org/10.1093/jaoac/94.3.985

A. Khatoon, J.A. Syed, J.A. Buledi, S. Shakeel, A. Mallah, A.R. Solangi, Sirajuddin, S.T.H. Sherazi, M.R. Shah, Bio-green fabrication of bell pepper mediated silver nanoparticles: an efficient material for electrochemical sensing of arbutin in cosmetics, Journal of the Iranian Chemical Society 19 (2022) 3659-3672. https://doi.org/10.1007/s13738-022-02558-z

Scientific Committee on Safety (SCCS). Opinion on oxidative hair dye substances and hydrogen peroxide used in products to colour eyelashes. Brussels, Belgium, European Commission. 2012. Report No. SCCS/1475/12. pp. 1-21. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_111.pdf

A. Müller, S. Sachse, M. Decker, F.-M. Matysik, W. Vonau, Comparison of H2O2 screen-printed sensors with different Prussian blue nanoparticles as electrode material, Journal of Electrochemical Science and Engineering 10 (2020) 199-207. https://doi.org/10.5599/jese.719

S. Chen, R. Yuan, Y. Chai, F. Hu, Electrochemical sensing of hydrogen peroxide using metal nanoparticles, Microchimica Acta 180 (2013) 15-32. https://doi.org/10.1007/s00604-012-0904-4

K. Dhara, D. R. Mahapatra, Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: a review, Journal of Materials Science 54 (2019) 12319-12357. https://doi.org/10.1007/s10853-019-03750-y

H. Shamkhalichenar, J.-W. Choi. Review—Non-Enzymatic Hydrogen Peroxide Electrochemical Sensors Based on Reduced Graphene Oxide, Journal of the Electrochemical Society 167 (2020) 037531. https://doi.org/10.1149/1945-7111/ab644a

M. A. Riaz, Y. Chen, Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies, Nanoscale Horizons 7 (2022) 463-479. https://doi.org/10.1039/D2NH00006G

K. Atacan, M. Özacar. Construction of a non-enzymatic electrochemical sensor based on CuO/g-C3N4 composite for selective detection of hydrogen peroxide, Materials Chemistry and Physics 266 (2021) 124527. https://doi.org/10.1016/j.matchemphys.2021.124527

M.-H. Chiu, A. S. Kumar, S. Sornambikai, P.-Y. Chen, Y. Shih, J.-M. Zen, Cosmetic Hydrogen Peroxide Detection Using Nano Bismuth Species Deposited Built-in Three-in-One Screen-Printed Silver Electrode, International Journal of Electrochemical Science 6 (2011) 2352-2365. http://www.electrochemsci.org/papers/vol6/6072352.pdf

A. Benvidi, M. T. Nafar, S. Jahanbani, M. D. Tezerjani, M. Rezaeinasab, S. Dalirnasab, Developing an electrochemical sensor based on a carbon paste electrode modified with nano-composite of reduced graphene oxide and CuFe2O4 nanoparticles for determination of hydrogen peroxide, Materials Science and Engineering C 75 (2017) 1435-1447. https://doi.org/10.1016/j.msec.2017.03.062

I. Mihailova, V. Gerbreders, M. Krasovska, E. Sledevskis, V. Mizers, A. Bulanovs, A. Ogurcovs, A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures, Beilstein Journal of Nanotechnology 13 (2022) 424-436. https://doi.org/10.3762/bjnano.13.35

V. Katic, P. L. dos Santos, M. F. dos Santos, B. M. Pires, H. C. Loureiro, A. P. Lima, J. C. M. Queiroz, R. Landers, R. A. A. Muñoz, J. A. Bonacin, 3D Printed Graphene Electrodes Modified with Prussian Blue: Emerging Electrochemical Sensing Platform for Peroxide Detection, ACS Applied Materials and Interfaces 11 (2019) 35068-35078. https://doi.org/10.1021/acsami.9b09305

D. Ye, Y. Xu, L. Luo, Y. Ding, Y. Wang, X. Liu, L. Xing, J. Peng, A novel non-enzymatic hydrogen peroxide sensor based on LaNi0.5Ti0.5O3/CoFe2O4 modified electrode, Colloids and Surfaces B 89 (2012) 10-14. https://doi.org/10.1016/j.colsurfb.2011.08.014

G. L. Luque, N. F. Ferreyra, A. G. Leyva, G. A. Rivas, Characterization of carbon paste electrodes modified with manganese based perovskites-type oxides from the amperometric determination of hydrogen peroxide, Sensors and Actuators B 142 (2009) 331-336. https://doi.org/10.1016/j.snb.2009.07.038

Z. Zhang, S. Gu, Y. Ding, J. Jin, A novel nonenzymatic sensor based on LaNi0.6Co0.4O3 modified electrode for hydrogen peroxide and glucose, Analytica Chimica Acta 745 (2012) 112-117. https://doi.org/10.1016/j.aca.2012.07.039

D. Xu, L. Li, Y. Ding, S. Cui, Electrochemical hydrogen peroxide sensors based on electrospun La0.7Sr0.3Mn0.75Co0.25O3 nanofiber modified electrodes, Analytical Methods 7 (2015) 6083-6088. https://doi.org/10.1039/c5ay01131k

S. Michalkiewicz, A. Skorupa, M. Jakubczyk, Carbon Materials in Electroanalysis of Preservatives, Materials 14 (2021) 7630-7653. https://doi.org/10.3390/ma14247630

F. Z. Kashani, S. M. Ghoreishi, A. Khoobi, Experimental and statistical analysis on a nanostructured sensor for determination of p-hydroxybenzoic acid in cosmetics, Materials Science and Engineering: C 94 (2019) 45-55. https://doi.org/10.1016/j.msec.2018.08.068

F. Z. Kashani, S. M. Ghoreishi, A. Khoobi, M. Enhessari, A carbon paste electrode modified with a nickel titanate nanoceramic for simultaneous voltammetric determination of ortho- and para-hydroxybenzoic acids, Microchimica Acta 186 (2019) 12. https://doi.org/10.1007/s00604-018-3113-y

K. Charoenkitamorn, W. Siangproh, O. Chailapakul, M. Oyama, S. Chaneam, Simple Portable Voltammetric Sensor Using Anodized Screen-Printed Graphene Electrode for the Quantitative Analysis of p-Hydroxybenzoic Acid in Cosmetics, ACS Omega 7 (2022) 16116-16126. https://doi.org/10.1021/acsomega.2c01434

K. M. Naik, S.T. Nandibewoor, Electroanalytical method for the determination of methylparaben, Sensors and Actuators A 212 (2014) 127-132. https://doi.org/10.1016/j.sna.2014.03.033

M. Behpour, S. Masoum, A. Lalifar, A. Khoobi, A novel method based on electrochemical approaches andmultivariate calibrations for study and determination of methylparaben in the presence of unexpected interferencein cosmetics, Sensors and Actuators B 214 (2015) 10-19. http://dx.doi.org/10.1016/j.snb.2015.03.003

P. D. Darbre, Underarm cosmetics and breast cancer, Journal of Applied Toxicology 23 (2003) 89-95. https://doi.org/10.1002/jat.899

P. Harvey, Parabens, oestrogenicity, underarm cosmetics and breast cancer: a perspective on a hypothesis, Journal of Applied Toxicology 23 (2003) 285-288. https://doi.org/10.1002/jat.946

S. Oishi, Effects of propyl paraben on the male reproductive system, Food and Chemical Toxicology 40 (2002) 1807-1813. https://doi.org/10.1016/s0278-6915(02)00204-1

J. J. Prusakiewicz, H. M. Harville, Y. H. Zhang, C. Ackermann, R. L. Voorman, Parabens inhibit human skin estrogen sulfotransferase activity: possible link to paraben estrogenic effects, Toxicology 232 (2007) 248-256. https://doi.org/10.1016/j.to x.2007.01.010

R. S. Tavares, F. C. Martins, P. J. Oliveira, J. Santosa, F. P. Peixoto, Parabens in male infertility-is there a mitochondrial connection, Reproductive Toxicology 27 (2009) 1-7. https://doi.org/10.1016/j.reprotox.2008.10.002

Y. Okamoto, T. Hayashi, S. Matsunami, K. Ueda, N. Kojima N. Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage, Chemical Research in Toxicology 21 (2008) 1594-1603. https://doi.org/10.1021/tx800066u

Regulation (EC). No 1223/2009 of the European Parliament and of the Council, of 30 November 2009, on Cosmetic Products. Off. J. Eur. Union 2009. ANNEX V, p. 136. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (Acessed on August 30, 2022).

C. D. Mendonça, T. M. Prado, F. H. Cincotto, R. T. Verbinnen, S. A. S. Machadoр, Methylparaben Quantification Via Electrochemical Sensor Based On Reduced Graphene Oxide Decorated With Ruthenium Nanoparticles, Sensors and Actuators B 251 (2017) 739-745. http://dx.doi.org/10.1016/j.snb.2017.05.083

L. F. de Lima, M. D. Cristiane, M. M. Celina, A. P. Elisabete, F. Marystela, Layer-by-Layer nanostructured films of magnetite nanoparticles and polypyrrole towards synergistic effect on methylparaben electrochemical detection, Applied Surface Science 505 (2020) 144278. https://doi.org/10.1016/j.apsusc.2019.144278

L. F. de Lima, E. A. Pereira, M. Ferreira, Electrochemical sensor for propylparaben using hybrid Layer-by-Layer films composed of gold nanoparticles, poly(ethylene imine) and nickel(II) phthalocyanine tetrasulfonate, Sensors and Actuators B 310 (2020) 127893. https://doi.org/10.1016/j.snb.2020.127893

Y. Wang, Y. Cao, C. Fang, Q. Gong, Electrochemical sensor for parabens based on molecular imprinting polymers with dual-templates, Analytica Chimica Acta 673 (2010) 145-150 https://doi.org/10.1016/j.aca.2010.05.039

P. Luo, J. Liu, Y. Li, Y. Miao, B. Ye, Voltammetric Determination of Methylparaban in Cosmetics Using a Multi-Wall Carbon Nanotubes/Nafion Composite Modified Glassy Carbon Electrode, Analytical Letters 45 (2012) 2445-2454. https://doi.org/10.1080/00032719.2012.691589

M. Soysal, An Electrochemical Sensor Based on Molecularly Imprinted Polymer for Methyl Paraben Recognition and Detection, Journal of Analytical Chemistry 76 (2021) 381-389. https://doi.org/10.1134/S1061934821030114

S. Guo, X. Wu, J. Zhou, J. Wang, B. Yang, B. Ye, MWNT/Nafion Composite Modified Glassy Carbon Electrode as the Voltammetric Sensor for Sensitive Determination of 8-Hydroxyquinoline in Cosmetic, Journal of Electroanalytical Chemistry 656 (2011) 45-49. https://doi.org/10.1016/j.jelechem.2011.02.010

T. T. Calam, E. B. Yılmaz, Electrochemical determination of 8-hydroxyquinoline in a cosmetic product on a glassy carbon electrode modified with 1-amino-2-naphthol-4-sulphonic acid, Instrumentation Science and Technology 49 (2021) 1-20. https://doi.org/10.1080/10739149.2020.1765175

Z. Gao, Q. Zeng, M. Wang, L. Wang, Sensitive Detection of 8-Hydroxyquinoline in Cosmetics by Using a Poly(tannic acid)-Modified Glassy Carbon Electrode, ChemistrySelect 7 (2022) e202200257. https://doi.org/10.1002/slct.202200257

L. Fotouhi, H. R. Shahbaazi, A. Fatehi, M. M. Heravi, Voltammetric Determination of Triclosan in Waste Water and Personal Care Products, International Journal of Electrochemical Science 5 (2010) 1390-1398. http://www.electrochemsci.org/papers/vol5/5091390.pdf

Regulation (EC). No 1223/2009 of the European Parliament and of the Council, of 30 November 2009, on Cosmetic Products. Off. J. Eur. Union 2009. ANNEX V, p. 138. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (Accessed on August 30, 2022).

A. Saljooqi, T. Shamspur, A. Mostafavi, A Sensitive Electrochemical Sensor Based on Graphene Oxide Nanosheets Decorated by Fe3O4@AuNanostructure Stabilized on Polypyrrole for Efficient Triclosan Sensing, Electroanalysis 32 (2020) 1297-1303. https://doi.org/10.1002/elan.201900634

V. R. Sri, R. Shwetharani, J. Mohammed, A. Mabkhoot, R. G. Balakrishna, F. A. Harraz, Review on Electrochemical Sensing of Triclosan using Nanostructured Semiconductor Materials, ChemElectroChem 9 (2022) e202101664. https://doi.org/10.1002/celc.202101664

R. M. Pemberton, J. P. Hart, Electrochemical behaviour of triclosan at a screen-printed carbon electrode and its voltammetric determination in toothpaste and mouthrinse products, Analytica Chimica Acta 390 (1999) 107-115. https://doi.org/10.1016/s0003-2670(99)00194-4

J. Yang, P. Wang, X. Zhang, K. Wu, Electrochemical sensor for rapid detection of triclosan using a multiwall carbon nanotube film, Journal of Agricultural and Food Chemistry 57 (2009) 9403-9407. https://doi.org/10.1021/jf902721r

H. Dai, G. Xu, L. Gong, C. Yang, Y. Lin, Y. Tong, J. Chen, G. Chen, Electrochemical detection of triclosan at a glassy carbon electrode modifies with carbon nanodots and chitosan, Electrochimica Acta 80 (2012) 362-367. https://doi.org/10.1016/j.electacta.2012.07.032

Y. L. Su, H. C. You, S. H. Cheng, C. Y. Lin, Fabrication of bacteriochlorin shell/gold core nanoparticles for the sensitive determination of trichlosan using differential pulse voltammetry, Analytica Chimica Acta 1123 (2020) 44-55. https://doi.org/10.1016/j.aca.2020.04.070

N. D. Luyen, T. T. T. Toan, H. T. Trang, V. T. Nguyen, L. V. T. Son, T. S. Thanh, N. M. Thanh, P. T. Quy, D. Q. Khieu, D. T. Nguyen, Electrochemical Determination of Triclosan Using ZIF-11/Activated Carbon Derived from the Rice Husk Modified Electrode, Journal of Nanomaterials (2021) 8486962. https://doi.org/10.1155/2021/8486962

Scientific Committee on Consumer Safety SCCS OPINION ON Zinc Pyrithione (ZPT) (CAS No 13463-41-7) - Submission III, p. 25. https://ec.europa.eu/health/document/download/aa535110-c020-4924-8507-5f867adc9972_en

Regulation (EC). No 1223/2009 of the European Parliament and of the Council, of 30 November 2009, on Cosmetic Products. Off. J. Eur. Union 2009. ANNEX V, p. 135. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (Accessed on August 30, 2022).

L. H. Wang, Determination of Zinc Pyrithione in Hair Care Products on Metal Oxides Modified Carbon Electrodes, Electroanalysis 12 (2000) 227-232. https://doi.org/10.1002/(sici)1521-4109(200002)12:3<227::aid-elan227>3.0.co;2-i

Y. Shih, Flow injection analysis of zinc pyrithione in hair care products on a cobalt phthalocyanine modified screen-printed carbon electrode, Talanta 6 (2004) 912-917. https://doi.org/10.1016/j.talanta.2003.10.039

L. R. Gaspar, P. M. B. G. Maia Campos, Evaluation of the photostability of different UV filters associations in a sunscreen. International Journal of Pharmaceutics 307 (2006) 123-128. https://doi.org/10.1016/j.ijpharm.2005.08.029

S. Seité, A. Fourtanier, D. Moyal, A. R. Young, Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens, British Journal of Dermatology 163 (2010) 903-914. https://doi.org/10.1111/j.1365-2133.2010.10018.x

A. Chisvert, A. Salvador, UV Filters in Sunscreens and other Cosmetics. Regulatory Aspects and Analytical Methods. Analysis of Cosmetic Products (2007) 83-120. https://doi.org/10.1016/b978-044452260-3/50028-0

M. Krause, A. Klit, M. Blomberg Jensen, T. Søeborg, H. Frederiksen, M. Schlumpf, W. Lichtensteiger, N.E. Skakkebaek, K.T. Drzewiecki, Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters, International Journal of Andrology 35 (2012) 424-436. https://doi.org/10.1111/j.1365-2605.2012.01280.x

M. Ghazipura, R. McGowan, A. Arslan, T. Hossain, Exposure to benzophenone-3 and reproductive toxicity: A systematic review of human and animal studies, Reproductive Toxicology 73 (2017) 175-183. https://doi.org/10.1016/j.reprotox.2017.08.015

J. C. Cardoso, B. M. L. Armondes, T. A. de Araújo, J. L. Raposo, N. R. Poppi, V. S. Ferreira, Determination of 4-methylbenzilidene camphor in sunscreen by square wave voltammetry in media of cationic surfactant, Microchemical Journal 85 (2007) 301-307. https://doi.org/10.1016/j.microc.2006.07.006

I. Narloch G. Wejnerowska, An Overview of the Analytical Methods for the Determination of Organic Ultraviolet Filters in Cosmetic Products and Human Samples, Molecules 26 (2021) 4780-4807. https://doi.org/10.3390/molecules26164780

M.-L. Chang, C.-M. Chang, Voltammetric determination of sunscreen by convenient epoxy-carbon composite electrodes, Journal of Food and Drug Analysis 9 (2001) 199-206 https://doi.org/10.38212/2224-6614.2783

L. H. Wang, Voltammetric Behavior of Sunscreen Agents at Mercury Film Electrode, Electroanalysis 14 (2002) 773-781. https://doi.org/10.1002/1521-4109(200206)14:11<773::AID-ELAN773>3.0.CO;2-A

J. B. G. Júnior, T. A. Araujo, M. A. G. Trindade, V. S. Ferreira, Electroanalytical determination of the sunscreen agent octocrylene in cosmetic products, International Journal of Cosmetic Science 34 (2011) 91-96. https://doi.org/10.1111/j.1468-2494.2011.00686.x

J. C. Cardoso, B. M. L. Armondes, J.B.G.eV. Ferreira, Simultaneous electrochemical determination of three sunscreens using cetyltrimethylammonium bromide, Colloids and Surfaces B 63 (2008) 34-40. https://doi.org/10.1016/j.colsurfb.2007.11.001

R. A. Lopes Neves, F. Moreira Araujo, F. Siqueira Pacheco, G. Chevitarese Azevedo, M. A. Costa Matos, R. Camargo Matos, Electrochemical Determination of Sunscreens Agents in Cosmetic Using Square Wave Voltammetry, Electroanalysis 313 (2018) 496-503. https://doi.org/10.1002/elan.201800747

Regulation (EC). No 1223/2009 of the European Parliament and of the Council, of 30 Novem¬ber 2009, on Cosmetic Products. Off. J. Eur. Union 2009. ANNEX III, p. 71. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (Accessed on August 30, 2022).

S. Shahrokhian, Y. Javad, Electrocatalytic oxidation of thioglycolic acid at carbon paste electrode modified with cobalt phthalocyanine: application as a potentiometric sensor, Electrochimica Acta 48 (2003) 4143-4148. https://doi.org/10.1016/S0013-4686(03)00582-6

J. M. Zen, H. H. Yang, M. H. Chiu, Y. J. Chen, Y. Shih, Determination of Thioglycolic Acid in Hair-Waving Products by Disposable Electrochemical Sensor Coupled with High-Performance Liquid Chromatography, Journal of AOAC International 92 (2009) 574-579. https://doi.org/10.1093/jaoac/92.2.574

B. Nair, A. R. Elmore, Cosmetic Ingredients Review Expert Panel. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite, International Journal of Toxicology 22 (2003) 63-88. https://doi.org/10.1080/10915810305077x

H. Vally, N. L. Misso, Adverse reactions to the sulphite additives, Gastroenterol Hepatol Bed Bench 5 (2012) 16-23 http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4017440/

The Scientific Committee on Cosmetic Products and Non Food Products intended for consumers, Evaluation and Opinion on: Inorganic Sulfites and Bisulfites, 23rd Plenary Meeting of the SCCNFP, 18 March, 2003 https://ec.europa.eu/health/ph_risk/committees/sccp/documents/out_200.pdf

P. Y. Chen, C. C. Huang, M. C. Chen, J. C. Hsu, Y. Shih, Determination of Sulfite in Hair Waving Products Using Oxygen-Incorporated Gold-Modified Screen-Printed Electrodes. Electroanalysis 24 (2012) 2267-2272. https://doi.org/10.1002/elan.201200126

M. Singh, S. R. Bhardiya, A. Rai, V. K. Rai, Electrochemical approach for recognition and quantification of p-phenylenediamine: a review, Sensors and Diagnostics 1 (2022) 376-386. https://doi.org/10.1039/d1sd00070e

H. J. Han, H. J. Lee, C. H. Bang, J. H. Lee, Y. M. Park, J. Y. Lee, P-Phenylenediamine Hair Dye Allergy and Its Clinical Characteristics, Annals of Dermatology 30 (2018) 316-321. https://doi.org/10.5021/ad.2018.30.3.316

Scientific Committee on Consumer Products (SCCP). Opinion on Exposure to Reactants and Reaction Products of Oxidative Hair Dye Formulations; European Commission, Health & Consumer Protection Directorate-General: Luxembourg, 2005. https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_032.pdf

M. H. Al-Enezi, F. S. Aldawsari, Study of P-Phenylenediamine (PPD) Concentrations after Hair Dye Mixing: A Call for Safety Reassessment, Cosmetics 9 (2022) 41-57. https://doi.org/10.3390/cosmetics9020041

A. Chisvert, P. Miralles, A. Salvador. Chapter 8 - Hair Dyes in Cosmetics: Regulatory Aspects and Analytical Methods. In Analysis of Cosmetic Products, 2nd ed.; A. Salvador, A. Chisvert, Eds.; Elsevier: Boston, MA, USA, 2018; pp. 159-173 https://doi.org/10.1016/B978-0-444-63508-2.00008-4

O. J. X. Morel, R. M. Christie, Current Trends in the Chemistry of Permanent Hair Dyeing, Chemical Reviews 111 (2011) 2537-2561. https://doi.org/10.1021/cr1000145

Y. H. Bai, J. Y. Li, Y. Zhu, J. J. Xu, H. J. Chen, Selective Detection of p-Phenylenediamine in Hair Dyes Based on a Special CE Mechanism Using MnO2 Nanowires, Electroanalysis 22 (2010) 1239-1247. https://doi.org/10.1002/elan.200900576

J. He, J. Sunarso, J. Miao, H. Sun, J. Dai, C. Zhang, W. Zhou, Z. Shao, A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes, Journal of Hazardous Materials 369 (2019) 699-706 https://doi.org/10.1016/j.jhazmat.2019.02.070

M. Singh, A. Sahu, S. Mahata, P. Shukla, A. Rai, V. K. Rai, Efficient electrocatalytic oxidation of p-phenylenediamine using a novel PANI/ZnO anchored bio-reduced graphene oxide nanocomposite, New Journal of Chemistry 43 (2019) 6500-6506. https://doi.org/10.1039/c9nj00837c

M. Singh, S. R. Bhardiya, A. Asati, H. Sheshma, V.K. Rai, A. Rai, Sensitive electrocatalytic determination of p-phenylenediamine using bimetallic nanocomposite of Cu-Ag nanoalloy and ionic liquid-graphene oxide, Journal of Electroanalytical Chemistry 894 (2021) 115360. https://doi.org/10.1016/j.jelechem.2021.115360

K. G. McGrath, Apocrine sweat gland obstruction by antiperspirants allowing transdermal absorption of cutaneous generated hormones and pheromones as a link to the observed incidence rates of breast and prostate cancer in the 20th century, Medical Hypotheses 72 (2009) 665-674. https://doi.org/10.1016/j.mehy.2009.01.025

P. D. Darbre, Aluminium and the human breast, Morphologie 100 (2016) 65-74. https://doi.org/10.1016/j.morpho.2016.02.001

M. H. Chiu, A. S. Kumar, S. Sornambikai, J. M. Zen, Y. Shih, Flow Injection Analysis of Aluminum Chlorohydrate in Antiperspirant Deodorants Using a Built-in Three-in-one Screen-Printed Silver Electrode, Electroanalysis 22 (2010) 2421-2427. https://doi.org/10.1002/elan.200900635

J. M. Zen, T. H. Yang, A. Kumar, Y. J. Chen, J. C. Hsu, Y. Shih, Detection of Aluminum Chlorohydrate Content in Antiperspirant Deodorants Using Screen-Printed Silver Electrodes by One Drop Analysis, Electroanalysis 21 (2009) 2272-2276. https://doi.org/10.1002/elan.200904670

B. Bocca, A. Pino, A. Alimonti, G. Forte, Toxic metals contained in cosmetics: a status report, Regulatory Toxicology and Pharmacology 68 (2014) 447-467. https://doi.org/10.1016/j.yrtph.2014.02.003

N. A. Bohari, S. Siddiquee, S. Saallah, M. Misson, S. E. Arshad, Optimization and Analytical Behavior of Electrochemical Sensors Based on the Modification of Indium Tin Oxide (ITO) Using PANI/MWCNTs/AuNPs for Mercury Detection, Sensors 20 (2020) 6502. https://doi.org/10.3390/s20226502

Z. Wang X. Fang, Chronic Mercury Poisoning from Daily Cosmetics: Case Report and Brief Literature Review, Cureus 13 (2021) e19916. https://doi.org/10.7759/cureus.19916

G. F. Sun, W. T. Hu, Z. H. Yuan, B. A. Zhang, H. Lu, Characteristics of mercury intoxication induced by skin-lightening products, Chinese Medical Journal 130 (2017) 3003-3004. https://doi.org/10.4103/0366-6999.220312

N. M. Hepp, W. R. Mindak, J. W. Gasper, C. B. Thompson, J. N. Barrows, Survey of cosmetics for arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel content, Journal of Cosmetic Science 65 (2014) 125-145 https://pubmed.ncbi.nlm.nih.gov/25043485/

J. M. Zen, A. S. Kumar, S. C. Lee, Y. Shih, Microliter Volume Determination of Cosmetic Mercury with a Partially Crosslinked Poly(4-vinylpyridine) Modified Screen-Printed Three-Electrode Portable Assembly, Electroanalysis 19 (2007) 2369-2374. https://doi.org/10.1002/elan.200703990

M. H. Chiu, J. M. Zen, A. S. Kumar, D. Vasu, Y. Shih, Selective Cosmetic Mercury Analysis Using a Silver Ink Screen-Printed Electrode with Potassium Iodide Solution, Electroanalysis 20 (2008). 2265-2270. https://doi.org/10.1002/elan.200804307

A. L. Suherman, E. E. L. Tanner, R.G. Compton, Recent developments in inorganic Hg2+ detection by voltammetry, TrAC Trends in Analytical Chemistry 94 (2017) 161-172. https://doi.org/10.1016/j.trac.2017.07.020

I. M. Isaa, M. I. Saidin, M. Ahmad, N. Hashim, S. A. Bakar, N. M. Ali, S. M. Si, Chloroplatinum(II) complex-modified MWCNTs paste electrode for electrochemical determination of mercury in skin lightening cosmetics, Electrochimica Acta 253 (2017) 463-471. http://dx.doi.org/10.1016/j.electacta.2017.09.092

A. L. Wani, A. Ara, J. A. Usmani, Lead toxicity: a review, Interdisciplinary Toxicology 8 (2015) 55-64. http://dx.doi.org/10.1515/intox-2015-0009

Regulation (EC). No 1223/2009 of the European Parliament and of the Council, of 30 Novem¬ber 2009, on Cosmetic Products. Off. J. Eur. Union 2009. ANNEX II, p. 32. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (Accessed on August 30, 2022)

ASEAN definition of cosmetics and illustrative list by category of cosmetic products. https://www.aseancosmetics.org/docdocs/technical.pdf (Accessed on August 30, 2022)

R. Feizi, N. Jaafarzadeh, H. Akbari, S. Jorfi, Evaluation of lead and cadmium concentrations in lipstick and eye pencil cosmetics, Environmental Health Engineering and Management Journal 6 (2019) 277-282. http://dx.doi.org/10.15171/EHEM.2019.31

Regulation (EC). No 1223/2009 of the European Parliament and of the Council, of 30. 11. 2009, on Cosmetic Products. Off. J. Eur. Union 2009. ANNEX II, p. 26. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (Accessed on August 30, 2022).

D. Zhao, J. Li, C. Li, A.L. Juhasz, K.G. Scheckel, J. Luo, H.B. Li, L.Q. Ma, Lead relative bioavailability in lip products and their potential health risk to women, Environmental Science and Technology 50 (2016) 6036-6043. http://dx.doi.org/10.1021/acs.est.6b01425

FDA. Lipstick and Lead: Questions and Answers. U.S. Food and Drug Administration (FDA) (2011) http://www.fda.gov/cosmetics/productsingredients/products/ucm137224.htm

K. Goswami, Eye cosmetic 'surma': hidden threats of lead poisoning, Indian Journal of Clinical Biochemistry 28 (2013) 71-73. http://dx.doi.org/10.1007/s12291-012-0235-6

E. Navarro-Tapia, M. Serra-Delgado, L. Fernández-López, M. Meseguer-Gilabert, M. Falcón, G. Sebastiani, S. Sailer, O. Garcia-Algar, V. Andreu-Fernández, Toxic Elements in Traditional Kohl-Based Eye Cosmetics in Spanish and German Markets, International Journal of Environmental Research and Public Health 18 (2021) 6109-6125. https://doi.org/10.3390/ijerph18116109

P. Swetha, J. Chen, A. S. Kumar, S. P. Feng, High index facets-Ag nanoflower enabled efficient electrochemical detection of lead in blood serum and cosmetics, Journal of Electroanalytical Chemistry 878 (2020) 114657. http://dx.doi.org/10.1016/j.jelechem.2020.114657

Q. Fardiyah, B. Rumhayati, I. Rosemiyani, Determination of lead in cosmetic sampels using coated wire lead(II) ion selective electrode based on phyropillite, UNEJ e-Proceeding (2017) 270-272. https://jurnal.unej.ac.id/index.php/prosiding/article/view/4239

T. M. Barros, D. M. de Araújo, A. T. L. de Melo, C. A. Martínez-Huitle, M. Vocciante, S. Ferro, E.V. dos Santos, An Electroanalytical Solution for the Determination of Pb2+ in Progressive Hair Dyes Using the Cork–Graphite Sensor, Sensors 22 (2022) 1466. https://doi.org/10.3390/s22041466

Y. Shih, J. M. Zen, A. S. Kumar, Y. C. Lee, H. R. Huang, Determination of the toxic lead level in cosmetic-hair dye formulations using a screen-printed silver electrode, Bulletin of the Chemical Society of Japan 77 (2004) 311-312 https://doi.org/10.1246/bcsj.77.311

S. Palisoc, A. M. Causing, M. Natividad, Gold nanoparticle/hexaammineruthenium/Nafion® modified glassy carbon electrodes for trace heavy metal detection in commercial hair dyes, Analytical Methods 9 (2017) 4240-4246 https://doi.org/10.1039/c7ay01114h

J. V. Maciel, G. D. da Silveira, A. M. M. Durigon, O. Fatibello-Filho, D. Dias, Use of carbon black based electrode as sensor for solid-state electrochemical studies and voltammetric determination of solid residues of lead, Talanta 236 (2022) 122881. https://doi.org/10.1016/j.talanta.2021.122881

Y. Yi, Y. Zhao, Z. Zhang, Y. Wu, G. Zhu, Recent developments in electrochemical detection of cadmium, Trends in Environmental Analytical Chemistry 33 (2022) e00152. https://doi.org/10.1016/j.teac.2021.e00152

L. A. De Furtado, I. O. de Lucena, J. O. de Fernandes, F. G. Lepri, D. L. de Martins, F. S. Semaan, New strategies for the simultaneous voltammetric quantification of Pb and Zn in hair cosmetics samples employing chemically modified composite electrodes, Journal of the International Measurement Confederation 125 (2018) 651-658. https://doi.org/10.1016/j.measurement.2018.05.042

W. Wang, N. Bao, W. Yuan, N. Si, H. Bai, Haiyu Li, Q. Zhang, Simultaneous determination of lead, arsenic, and mercury in cosmetics using a plastic based disposable electrochemical sensor, Microchemical Journal 148 (2019) 240-247. https://doi.org/10.1016/j.microc.2019.05.011



22-11-2022 — Updated on 22-11-2022

How to Cite

Dodevska, T., Hadzhiev, D., & Shterev, I. (2022). Electrochemical sensors for the safety and quality control of cosmetics: An overview of achievements and challenges: Review paper. Journal of Electrochemical Science and Engineering, 14(1), 3–35. https://doi.org/10.5599/jese.1507



Electroanalytical chemistry