A review of the electrochemical corrosion of metals in choline chloride based deep eutectic solvents

Review Paper





ionic liquids, ethaline, reline, glyceline, hydrogen bond donor
Graphical Abstract


Deep eutectic solvents (DESs) are a class of mixtures with melting points notably lower than those of their raw constituent components. These liquids have found a tremendously wide spectrum of applications in the last two decades of their research, so their contact and interaction with technical metals and alloys are inevitable. Therefore, the corrosivity of DESs towards metals is an extremely important topic. This review summarizes research efforts collected in the last two decades related to the corrosion rate of various metals in different DESs. Since the DESs are mainly composed of organic raw compounds, and by their physicochemical properties they may be regarded as a separate class of ionic liquids, the literature data about DESs corrosivity has been compared to the data related to the corrosivity of various organic solvents and ionic liquids as well. All the results gained until now show significantly low corrosivity of DESs. This observation is discussed in relation to the chemical composition of DESs. The absence of the oxidizing agents, the inhibitory action of organic ions and molecules, high viscosity and low electrical conductivity have been recognized as the main factors contributing to the low metal corrosion rate in DESs.


Download data is not yet available.


A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chemical Communications 0 (2003) 70-71. https://doi.org/10.1039/B210714G

B.B. Hansen, S. Spittle, B. A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L. Adhikari, T. Zelovich, B. W. Doherty, B. Gurkan, E. J. Maginn, . Baker, M. E. Tuckerman, R. F. Savinell, J. R. Sangoro, Chemical Reviews 121 (2021) 1232-1285. https://dx.doi.org/10.1021/acs.chemrev.0c00385

A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed, Journal of the American Chemical Society 126 (2004) 9142-9147. https://doi.org/10.1021/ja048266j

E. L. Smith, A. P. Abbott, K. S. Ryder, Chemical Reviews 114 (2014) 11060-11082. https://doi.org/10.1021/cr300162p

K. Radošević, M. Cvjetko Bubalo, V. G. Srček, D. Grgas, D. Landeka, T. L. Dragičević, I. Radojčić Redovniković, Ecotoxicology and Environmental Safety 112 (2015) 46-53. https://doi.org/10.1016/j.ecoenv.2014.09.034

B. Gurkan, H. Squire, E. Pentzer, Journal of Physical Chemistry Letters 10 (2019) 7956-7964. https://doi.org/10.1021/acs.jpclett.9b01980

G. R. Jenkin, A. Z. Al-Bassam, R. C. Harris, A. P. Abbott, D. J. Smith, D. A. Holwell, R. J. Chapman, C .J. Stanley, Minerals Engineering 87 (2016) 18-24. https://doi.org/10.1016/j.mineng.2015.09.026

A. P. Abbott, K. J. McKenzie, K. S. Ryder, ACS Symposium Series 975 (2007) 186-197. https://doi.org/10.1021/bk-2007-0975.ch013

P. Sebastian, M. I. I. Giannotti, E. Gómez, J. M. Feliu, ACS Applied Energy Materials 1 (2018) 1016-1028. https://doi.org/10.1021/acsaem.7b00177

F. S. Oliveira, A. B. Pereiro, L. P. Rebelo, I. M. Marrucho, Green Chemistry 15 (2013) 1326-1330. https://doi.org/10.1039/c3gc37030e

N. Schaeffer, M. A. Martins, C. M. Neves, S. P. Pinho, J. A. Coutinho, Chemical Communications 54 (2018) 8104-8107. https://doi.org/10.1039/c8cc04152k

S. Sarmad, J. P. Mikkola, X. Ji, ChemSusChem 10 (2017) 324-352. https://doi.org/10.1002/-cssc.¬201600987

M. Chakrabarti, F. Mjalli, I. Alnashef, M. Hashim, M. Hussain, L. Bahadori, C. Low, Renewable Sustainable Energy Reviews 30 (2014) 254-270. https://doi.org/10.1016/j.rser.2013.10.004

H. D. Jhong, D. S. H. Wong, C. C. Wan, Y. Y. Wang, T. C. Wei, Electrochemistry Communications 11 (2009) 209-211. https://doi.org/10.1016/j.elecom.2008.11.001

M. Pätzold, S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, D. Holtmann, Trends in Biotechnology 37 (2019) 943-959. https://doi.org/10.1016/j.tibtech.2019.03.007

H. Zhao, G. A. Baker, Journal of Chemical Technology and Biotechnology 88 (2013) 3-12. https://doi.org/10.1002/jctb.3935

K. D. O. Vigier, G. Chatel, F. Jérôme, ChemCatChem 7 (2015) 1250-1260. https://doi.org/10.1002/cctc.201500134

R. Esquembre, J. M. Sanz, J. G. Wall, F. del Monte, C. R. Mateo, M. L. Ferrer, Physical Chemistry Chemical Physics 15 (2013) 11248-11256. https://doi.org/10.1039/c3cp44299c

I. Mamajanov, A. E. Engelhart, H. D. Bean, N. V. Hud, Angewandte Chemie International Edition 49 (2010) 6310-6314. https://doi.org/10.1002/anie.201001561

M. Zakrewsky, A. Banerjee, S. Apte, T. Kern, M. Jones, R. Sesto, A. Koppisch, D. Fox, S. Mitragotri, Advanced Healthcare Materials 5 (2016) 1282-1289. https://doi.org/10.1002/adhm.201600086

Y. Huang, F. Shen, J. La, G. Luo, J. Lai, C. Liu, G. Chu, Particulate Science and Technology 31 (2013) 81-84. https://doi.org/10.1080/02726351.2011.648823

X. Cunying, W. Qing, Y. Hua, J. Li, Journal of Solid State Electrochemistry 18 (2014) 2149-2155. https://doi.org/10.1007/s10008-014-2468-1

R. Bernasconi, G. Panzeri, A. Accogli, F. Liberale, L. Nobili, L. Magagnin, Electrodeposition from deep eutectic solvents in: Progress and Developments in Ionic Liquids, IntechOpen (2017) 235-261. https://doi.org/10.5772/64935

A. V. Rudnev, Russian Chemical Reviews 89 (2020) 1463-1482. https://doi.org/10.1070/RCR4970

A. P. Abbott, K. J. McKenzie, Physical Chemistry Chemical Physics 8 (2006) 4265-4279. https://doi.org/10.1039/B607329H

V. S. Cvetkovic, N. M. Vukicevic, N. Jovicevic, J. S. Stevanovic, J. N. Jovicevic, Transactions of Nonferrous Metals Society of China 30 (2020) 823-834. https://doi.org/10.1016/S1003-6326(20)65257-8

Y.H. You, C. Gu, X. Wang, J. Tu, Surface and Coatings Technology 206 (2012) 3632-3638. https://doi.org/10.1016/j.surfcoat.2012.03.001

T. A. Green, P. Valverde, S. Roy, Journal of the Electrochemical Society 165 (2018) D313-D320. https://doi.org/10.1149/2.0371809jes

T. A. Green, X. Su, S. Roy, ECS Transactions 77 (2017) 1247-1253. https://doi.org/ 10.1149/07711.1247ecs

S. Ghosh, S. Roy, Surface and Coatings Technology 238 (2014) 165-173. https://doi.org/10.1016/j.surfcoat.2013.10.069

P. Valverde, T. Green, S. Roy, ECS Transactions 77 (2017) 859-864. https://doi.org/10.1149/07711.0859ecst

M. Bučko, D. Culliton, A. J. Betts, J. B. Bajat, Transactions of the IMF 95 (2017) 60-64. https://doi.org/10.1080/00202967.2017.1255412

E. Gómez, P. Cojocaru, L. Magagnin, E. Valles, Journal of Electroanalytical Chemistry 658 (2011) 18-24. https://doi.org/10.1016/j.jelechem.2011.04.015

P. Cojocaru, L. Magagnin, E. Gomez, E. Vallés, Materials Letters 65 (2011) 3597-3600. https://doi.org/10.1016/j.matlet.2011.08.003

M. Steichen, M. Thomassey, S. Siebentritt, P. J. Dale, Physical Chemistry Chemical Physics 13 (2011) 4292-4302. https://doi.org/10.1039/C0CP01408G

P. Guillamat, M. Cortés, E. Vallés, E. Gómez, Surface and Coatings Technology 206 (2012) 4439-4448. https://doi.org/10.1016/j.surfcoat.2012.04.093

A. P. Abbott, J. C. Barron, K. S. Ryder, D. Wilson, Chemistry A European Journal 13 (2007) 6495-6501. https://doi.org/10.1002/chem.200601738

T. Beyersdorff, T. J. S. Schubert, U. Welz-Biermann, W. Pitner, A. P. Abbott, K. J. McKenzie, K. S. Ryder, in D. R. MacFarlane, A. P. Abbott, (eds.), Electrodeposition from ionic liquids, Wiley-VCH, Weinheim, Germany, 2008, p. 15. https://doi.org/10.1002/9783527682706

E. Heitz, Corrosion of metals in organic solvents, in M.G. Fontana et al. (eds.), Advances in Corrosion Science and Technology, Plenum Press, New York, USA, 1974, p. 149. https://doi.org/10.1007/978-1-4615-9059-0_3

A. P. Abbott, S. S. M. Alabdullah, A. Y. M. Al-Murshedi, K.S. Ryder, Faraday Discussions 206 (2018) 365-377. https://doi.org/10.1039/c7fd00153c

T. Lemaoui, F. Abu Hatab, A. S. Darwish, A. Attoui, N. E. H. Hammoudi, G. Almustafa, M. Benaicha, Y. Benguerba, I. M. Alnashef, ACS Sustainable Chemical Engineering 9 (2021) 5783-5808. https://doi.org/10.1021/acssuschemeng.0c07367

E. Heitz', C. Kyriazis, Industrial & Engineering Chemistry Research 17 (1978) 37-41. https://doi.org/10.1021/i360065a011

S. S. Alabdullah, pH measurements in ionic liquids, Doctoral Thesis, University of Leicester, 2018.

A. Mitar, M. Panić, J. Prlić Kardum, J. Halambek, A. Sander, K. Zagajski Kučan, I. Radojčić Redovniković, K. Radošević, Chemical and Biochemical Engineering Quarterly 33 (2019) 1-18. https://doi.org/10.15255/CABEQ.2018.1454

F. S. Mjalli, O.U. Ahmed, Asia-Pacific Journal of Chemical Engineering 12 (2017) 313-320. https://doi.org/10.1002/apj.2074

F. S. Mjalli, O. U. Ahmed, Korean Journal of Chemical Engineering 33 (2016) 337-343. https://doi.org/10.1007/s11814-015-0134-7

D. Shah, F. S. Mjalli, Physical Chemistry Chemical Physics 16 (2014) 23900-23907. https://doi.org/10.1039/C4CP02600D

A. P. Abbott, E. I. Ahmed, R. C. Harris, K. S. Ryder, Green Chemistry 16 (2014) 4156-4161. https://doi.org/10.1039/C4GC00952E

I. M. Pateli, D. Thompson, S. S. M. Alabdullah, A. P. Abbott, G. R. T. Jenkin, J. M. Hartley, Green Chemistry 22 (2020) 5476-5486. https://doi.org/10.1039/D0GC02023K

E. McCafferty, Corrosion Science 45 (2003) 1421-1438. https://doi.org/10.1016/S0010-938X(02)00231-7

J. Soltis, Corrosion Science 90 (2015) 5-22. https://doi.org/10.1016/j.corsci.2014.10.006

X. Li, K. Binnemans, Chemical Reviews 121 (2021) 4506-4530. https://doi.org/10.1021/acs.chemrev.0c00917

Y. Nakao, Journal of the Chemical Society, Chemical Communications 5 (1992) 426-427. https://doi.org/10.1039/C39920000426

G. Kear, B. D. Barker, F. C. Walsh, Corrosion Science 46 (2004) 109-135. https://doi.org/10.1016/S0010-938X(02)00257-3

F. R. Pérez, C. A. Barrero, A. R. H. Walker, K. E. García, K. Nomura, Materials Chemistry and Physics 117 (2009) 214-223. https://doi.org/10.1016/j.matchemphys.2009.05.045

A. A. Kityk, Y. D. Rublova, A. Kelm, V. V. Malyshev, N. G. Bannyk, I. Flis-Kabulska, Journal of Electroanalytical Chemistry 823 (2018) 234-244. https://doi.org/10.1016/j.jelechem.-2018.06.018

J. M. Hartley, C. M. Ip, G. C. H. Forrest, K. Singh, S. J. Gurman, K. S. Ryder, A. P. Abbott, G. Frisch, Inorganic Chemistry 53 (2014) 6280-6288. https://doi.org/10.1021/ic500824r

J. L. Barriada, A. D. Tappin, E. Hywel Evans, E. P. Achterberg, TrAC Trends in Analytical Chemistry 26 (2007) 809-817. https://doi.org/10.1016/j.trac.2007.06.004

A. P. Abbott, G. Frisch, S. J. Gurman, A. R. Hillman, J. Hartley, F. Holyoak, K. S. Ryder, Chemical Communications 47 (2011) 10031-10033. https://doi.org/10.1039/C1CC13616J

M. Bucko, A. C. Bastos, M. G. S. Ferreira, J. B. Bajat, Electrochimica Acta 357 (2020) 136861. https://doi.org/10.1016/j.electacta.2020.136861

T. H. Ibrahim, R. Alhasan, M. Bedrelzaman, M. A. Sabri, N. A. Jabbar, F. S. Mjalli, Inter¬na¬ti¬o-nal Journal of Electrochemical Science 14 (2019) 8450-8469. https://doi.org/10.20964/2019.09.27

J. Tang, C. Xu, X. Zhu, H. Liu, X. Wang, M. Huang, Y. Hua, Q. Zhang, Y. Li, Journal of The Electrochemical Society 165 (2018) E406-E411. https://doi.org/10.1149/2.0091810jes

M. L. Doche, A. Mandroyan, M. Mourad-Mahmoud, V. Moutarlier, J. Y. Hihn, Chemical Engineering and Processing: Process Intensification 121 (2017) 90-96. https://doi.org/10.1016/j.cep.2017.08.006

J. Zhang, C. Gu, W. Yan, J. Tu, X. Ding, Surface and Coatings Technology 344 (2018) 702-709. https://doi.org/10.1016/j.surfcoat.2018.04.004

G. H. Lane, Electrochimica Acta 83 (2012) 513-528. https://doi.org/10.1016/j.electacta.-2012.¬08.¬046

G. Song, D. StJohn, Corrosion Science 46 (2004) 1381-1399. https://doi.org/10.1016/j.corsci.-2003.10.008

R. Clark, Nature 168 (1951) 876-876. https://doi.org/10.1038/168876a0

D. E. Nichols, D. T. Nguyen, M. M. Norton, B. R. Parker, L. E. Daniels, 202nd National Meeting of the American Chemical Society, The effect of conditioning agents on the corrosive properties of molten urea, New York, USA, 1991, p. 1

H. Liang, H. Li, Z. Wang, F. Wu, L. Chen, X. Huang, The Journal of Physical Chemistry B 105 (2001) 9966-9969. https://doi.org/10.1021/jp0119779

R. J. Meakins, Journal of Applied Chemistry 13 (1963) 339-345. https://doi.org/10.1002/jctb.-5010130803

R. Solmaz, Corrosion Science 81 (2014) 75-84. https://doi.org/10.1016/j.corsci.2013.12.006

C. Verma, I. B. Obot, I. Bahadur, E.-S. M. Sherif, E. E. Ebenso, Applied Surface Science 457 (2018) 134-149. https://doi.org/10.1016/j.apsusc.2018.06.035

S. M. Abd El Haleem, S. Abd El Wanees, E. E. Abd El Aal, A. Farouk, Corrosion Science 68 (2013) 1-13. https://doi.org/10.1016/j.corsci.2012.03.021

B. Widyanto, I. Gede Bagus Eka Suputra Wiguna, Heliyon 5 (2019) e02006. https://doi.org/10.1016/j.heliyon.2019.e02006

D. Jayaperumal, Materials Chemistry and Physics 119 (3) 478-484. https://doi.org/10.1016/j.matchemphys.2009.09.028

J. Wu, R. Zhou, P.M. Radjenovic, S. Liu, D. Wu, J. Li, B. Mao, J. Yan, Electrochimica Acta 390 (2021) 138859. https://doi.org/10.1016/j.electacta.2021.138859

R. Costa, M. Figueiredo, C. M. Pereira, F. Silva, Electrochimica Acta 55 (2010) 8916-8920. https://doi.org/10.1016/j.electacta.2010.07.070

S. Rozas, M. Atilhan, S. Aparicio, The Journal of Physical Chemistry B 124 (2020) 1197-1206. https://doi.org/10.1021/acs.jpclett.9b01980

P. Hronsky, Corrosion 37 (1981) 161-170. https://doi.org/10.5006/1.3622160

S. R. Gregory, Physical properties of glycerine, in E. Jungermann, N.O.V. Sonntag (eds.) Glycerine A Key Cosmetic Ingredient, CRC Press, Boca Raton, USA, 1991, p. 111. https://doi.org/10.1201/9780203753071

V. V. Loskutov, G. N. Kosova, Russian Journal of Physical Chemistry A 93 (2019) 260-264. https://doi.org/10.1134/S003602441902016X

J. Raymund Brusas, E. M. B. Dela Pena, Journal of Electrochemical Science and Technology (2021) Ahead of print. https://doi.org/10.33961/jecst.2020.01522

D. Cuiling, B. Zhao, C. Xiao-Bo, N. Birbilis, H. Yang, Scientific Reports 6 (2016) 29225-29239. https://doi.org/10.1038/srep29225

M. Bucko, S. Roy, P. Valverde-Armas, A. Onjia, A. C. Bastos, J. B. Bajat, Journal of The Electrochemical Society 165 (16) (2018) H1059-H1065. https://doi.org/10.1149/2.0921816jes]

Y. D. Rublova, A. A. Kityk, N. G. Bannyk, V. S. Protsenko, F. I. Danilov, Materials Today: Proceedings 6 (2019) 232-236. https://doi.org/10.1016/j.matpr.2018.10.099

J. M. Vuksanović, N. M. Todorović, M. Lj. Kijevčanin, S. P. Šerbanović, I. R. Radović, Journal of the Serbian Chemical Society 82 (2017) 1287-1302. https://doi.org/10.2298/JSC170316054V

M. Uerdingen, C. Treber, M. Balser, G. Schmitt, C. Werner, Green Chemistry 7 (2005) 321-325. https://doi.org/10.1039/B419320M

A. Shkurankov, S. Z. El Abedin, F. Endres, Australian Journal of Chemistry 60 (2007) 35-42. https://doi.org/10.1071/CH06305

S. Noori, M. V. Diamanti, M. P. Pedeferri, A. Brenna, M. Ormellese, Materials and Corrosion 69 (2018) 1658-1668. https://doi.org/10.1002/maco.201810215




How to Cite

Bučko, M., & Bajat, J. (2021). A review of the electrochemical corrosion of metals in choline chloride based deep eutectic solvents: Review Paper. Journal of Electrochemical Science and Engineering, 12(2), 237–252. https://doi.org/10.5599/jese.1135



Electrochemical Science