BSA-binding studies of 2- and 4-ferrocenylbenzonitrile: voltammetric, spectroscopic and molecular docking investigations

  • Hacen Benamara University of El Oued, Chemistry Department, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria
  • Touhami Lanez University of El Oued, Chemistry Department, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria
  • Elhafnaoui Lanez University of El Oued, Chemistry Department, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria
Keywords: Cyclic voltammetry, modelling, in silico, in vitro., ferrocene derivatives, binding constant, interactions
4FBN

Abstract

The binding affinity of 2-ferrocenylbenzonitrile (2FBN) and 4-ferrocenylbenzonitrile (4FBN) with bovine serum albumin (BSA) has been investigated by cyclic voltammetry, absorption spectroscopy and molecular modelling techniques.  The results indicated that both of the two derivatives could bind to BSA and cause conformational changes with the order 2FBN > 4FBN. The voltammetric behavior of 2FBN and 4FBN before and after the addition of the BSA suggests that the redox process is kinetically controlled by the diffusion step, and demonstrated that the diffusion coefficients of the 2FBN-BSA and 4-FBN-BSA adducts are lower than that of the free compounds. Furthermore, molecular docking suggested that the binding mode of the two compounds to BSA is of hydrophobic and hydrogen bond interactions, moreover the ligand 2FBN additionally show a π-cation interaction.

References

R. G. Jones, J. Kahovec, R. Stepto, E. S. Wilks, M. Hess, T. Kitayama, W. Val Matanomski, Compendium of Polymer Terminology and Nomenclature, IUPAC Recommendations 2008, (Eds.). With advice from A. Jenkins and P. Kratochvil, The Royal Society of Chemistry, Cambridge, UK, 2009, p. 98.

Nitriles - MeSH - NCBI, (n.d.). https://www.ncbi.nlm.nih.gov/mesh/68009570 (accessed April 22, 2020).

J. Wit, H. Van Genderen, Biochemical Journal 101(3) (1966) 698-706.

D. H. Hutson, E. C. Hoadley, M. H. Griffiths, C. Donninger, Journal of Agricultural and Food Chemistry 18(3) (1970) 507-512.

S. T. Murphy, H. L. Case, E. Ellsworth, S. Hagen, M. Huband, T. Joannides, C. Limberakis, K. R. Marotti, A. M. Ottolini, M. Rauckhorst, J. Starr, M. Stier, C. Taylor, T. Zhu, A. Blaser, W. A. Denny, G. L. Lu, J. B. Smaill, F. Rivault, Bioorganic and Medicinal Chemistry Letters 17(8) (2007) 2150-2155.

F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook, Journal of Medicinal Chemistry 53(22) (2010) 7902-7917.

J-Y. Le Questel, M. Berthelot, C. Laurence, Journal of Physical Organic Chemistry 13(6) (2000) 347-358.

C. Laurence, K. A. Brameld, J. Graton, J. Y. Le Questel, E. Renault, Journal of Medicinal Chemistry 52(14) (2009) 4073-4086.

A. Allerhand, P. von Rague Schleyer, Journal of the American Chemical Society 85(7) (1963) 866-870.

Y. Wang, Y. Du, N. Huang, Future Medicinal Chemistry 10(23) (2018) 2713-2728.

L. Xue, F. Zou, Y. Zhao, X. Huang, Y. Qu, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 97 (2012) 858-863.

R. E. Royer, M. Kibirige, C. R. Tafoya, D. L. Vander Jagt, L. M. Deck, Journal of Pharmaceutical Sciences 77(3) (1988) 237-240.

J. T. First, J. D. Slocum, L. J. Webb, Journal of Physical Chemistry B 122(26) (2018) 6733-6743.

T. Peters Jr., All about albumin: biochemistry, genetics, and medical applications, Academic Press Inc., San Diego, California, 1996, p. 382.

M. Fasano, S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso, S. Notari, P. Ascenzi, IUBMB Life 57(12) (2005) 787-796.

P. Lee, X. Wu, Current Pharmaceutical Design 21(14) (2015) 1862-1865.

T. Topală, A. Bodoki, L. Oprean, R. Oprean, Clujul Medical 87(4) (2014) 215-219.

L. Zhang, Q. Y. Cai, Z. X. Cai, Y. Fang, C. S. Zheng, L. L. Wang, S. Lin, D. X. Chen, J. Peng, Molecules 21(12) (2016) 1706. doi: https://doi.org/10.3390/molecules21121706.

Q. Zhang, Y. Ni, RSC Advances 7(63) (2017) 39833-39841.

D. Sood, N. Kumar, G. Rathee, A. Singh, V. Tomar, R. Chandra, Scientific Reports 8 (2018) 16964. doi.org/10.1038/s41598-018-35384-6.

J. Yu, J.-Y. Liu, W.-M. Xiong, X.-Y. Zhang, Y. Zheng, BMC Chemistry 13 (2019). 95. doi.org/10.1186/s13065-019-0615-6.

D. Sleep, Expert Opinion on Drug Delivery 12 (2015) 793–812.

G. L. Francis, Cytotechnology 62(1) (2010) 1-16.

A. M. Bagoji, J. I. Gowda, N. M. Gokavi, S.T. Nandibewoor, Journal of Biomolecular Structure and Dynamics 35(11) (2017) 2395-2406.

F. A. Larik, A. Saeed, T. A. Fattah, U. Muqadar, P. A. Channar, Applied Organometallic Chemistry 31(8) (2016), doi.org/10.1002/aoc.3664.

M. Patra, G. Gasser, Nature Reviews Chemistry 1(9) (2017) 0066. https://doi.org/10.1038/s41570-017-0066.

M. Patra, G. Gasser, M. Wenzel, K. Merz, J. E. Bandow, N. Metzler-Nolte, Organometallics 29(19) (2010) 4312-4319.

M. Görmen, P. Pigeon, S. Top, E. A. Hillard, M. Huché, C. G. Hartinger, F. de Montigny, M. A. Plamont, A. Vessières, G. Jaouen, ChemMedChem 5 (2010) 2039-2050.

W. I. Pérez, Y. Soto, C. Ortíz, J. Matta, E. Meléndez, Bioorganic and Medicinal Chemistry 23(3) (2015) 471-479.

J. Yong, X. Wang, X. Wu, C. Lu, Journal of Infectious Diseases & Therapy 5(1) (2017) 1000311. doi: https://doi.org/10.4172/2332-0877.1000311.

A. S. Hassan, T. S. Hafez, Journal of Applied Pharmaceutical Science 8(5) (2018) 156-165.

S. Li, Z. Wang, Y. Wei, C. Wu, S. Gao, H. Jiang, X. Zhao, H. Yan, X. Wang, Biomaterials 34(4) (2013) 902-911.

H. Benamara, T. Lanez, Journal of Fundamental and Applied Sciences 11(3) (2019) 1267-1278.

A. Adaika, T. Lanez, E. Lanez, Journal of Fundamental and Applied Sciences 11(2) (2019) 748-768.

E. Lanez, L. Bechki, T. Lanez, Chemistry and Chemical Technology 13(1) (2019) 11-17.

X. Gao, G. Gong, Z. Zhang, G. Du, Y. Cao, G. Zhao, Journal of Molecular Structure 1200 (2020) 127077. https://doi.org/10.1016/j.molstruc.2019.127077

S. Sansook, E. Lineham, S. Hassell-Hart, G. J. Tizzard, S. J. Coles, J. Spencer, S. J. Morley, Molecules 23(9) (2018) 2126. https://doi.org/10.3390/molecules23092126.

S. Realista, S. Quintal, P. N. Martinho, A. I. Melato, A. Gil, T. Esteves, M. de Deus Carvalho, L. P. Ferreira, P. D. Vaz, M. J. Calhorda, Journal of Coordination Chemistry 70(2) (2017) 314-327.

T. Lanez, P. L. Pauson, Journal of the Chemical Society, Perkin Transactions 1 (1990) 2437-2442.

A. Ray, B. Koley Seth, U. Pal, S. Basu, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 92 (2012) 164-174.

M. Frisch, G. Trucks, H. Schlegel, G. E. Scuseria…, Gaussian 09, Gaussian Inc., Wallingford, 2009.

B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chemical Physics Letters 157(3) (1989) 200-206.

A. D. Becke, The Journal of Chemical Physics 98(7) (1993) 5648-5652.

G. M. Morris, H. Ruth, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, Journal of Computational Chemistry 30(16) (2009) 2785-2791.

O. Trott, A. J. Olson, Journal of Computational Chemistry 31(2) (2009) 455-461.

S. Bi, L. Yan, B. Wang, J. Bian, Y. Sun, Journal of Luminescence 131(5) (2011) 866-873.

M. Mahanthappa, B. G. Gowda, J. I. Gowda, R. Rengaswamy, Journal of Electrochemical Science and Engineering 6(2) (2016) 155-164.

J. B. M. Leuna, S. K. Sop, S. Makota, E. Njanja, T. C. Ebelle, A. G. Azebaze, E. Ngameni, A. Nassi, Bioelectrochemistry 119 (2018) 20–25.

S. Pramanik, R. Chakraborty, International Journal of Biosensors & Bioelectronics 2(3) (2017) 96-98.

J. Wu, S. Y. Bi, X. Y. Sun, R. Zhao, J. H. Wang, H. F. Zhou, Journal of Biomolecular Structure and Dynamics 37(13) (2019) 3496–3505.

J. R. Flores, R. O’Kennedy, M. R. Smyth, Analytica Chimica Acta 212 (1988) 355–358.

A. E. M. Radi, S. H. Eissa, Eurasian Journal of Analytical Chemistry 6(1) (2011) 13-21.

X. Chu, G. L. Shen, J. H. Jiang, T. F. Kang, B. Xiong, R. Q. Yu, Analytica Chimica Acta 373(1) (1998) 29-38.

M. Aslanoglu, G. Ayne, Analytical and Bioanalytical Chemistry 380 (2004) 658-663.

C. M. A. Brett, A. N. A. Maria, O. Brett, Electrochemistry: Principles, Methods, and Applications, Oxford University Press, Oxford, UK, 1993, p. 444.

M. Nie, Y. Wang, H. L. Li: Polish Journal of Chemistry 71(6) (1997) 816-822.

Published
02-07-2020
Section
Electrochemical Science